Monthly Archives: June 2017

Ear necrosis in pigs

An investigation of ear necrosis in pigs
Jeonghwa Park, Robert M. Friendship, Zvonimir Poljak, Josepha DeLay, Durda Slavic, and Catherine E. Dewey
Can Vet J v.54(5): 491-495.

Abstract

Porcine ear necrosis was investigated in 23 conveniently chosen farms, consisting of 14 case farms and 9 control farms. Biopsies of lesions and oral swabs from pigs on 11 case farms were examined by histology and bacterial culture. All farms were visited for observations and a survey on management, housing, and the presence of other clinical signs or behavioral vices. Histological examination revealed that the lesions began on the surface and progressed to deeper layers, and that vascular damage did not appear to be the initiating cause. Spirochetes were only rarely observed in histological examination and were not cultured from biopsies and oral swabs. Staphylococcus aureus and Staphylococcus hyicus were cultured from 91% and 66% of samples, respectively. Ear biting and a humid environment were associated with ear necrosis. On some farms large numbers of pigs were affected and lesions were sometimes extensive. The condition appears to be an infectious disease beginning on the surface of the skin; contributing environmental and management factors are likely.

Practical guide to enrichment for pigs

A Practical Guide to Environmental Enrichment for Pigs – A handbook for pig farmers. By AHDB Pork, UK

“This guide aims to give practical advice to pig farmers surrounding the complex
issue of providing suitable environmental enrichment to pigs. It provides
useful information from the knowledge of farmers, researchers and scientific
literature on the different ways environmental enrichment can be provided for
differing types of housing and systems. The information is set out in sections
by housing type, and in each, the types of enrichments that are most suited
to each system are discussed, including their properties, how to present
the enrichment, quantities and practical considerations, such as ease of
installation, maintenance and costs.” (cited from the introduction in the guide).

 

Reducing crude protein levels in pig diets to increase protein efficiency may also increase damaging behaviours, esp. under conditions of poor sanitation

A link between damaging behaviour in pigs, sanitary conditions, and dietary protein and amino acid supply
By Yvonne van der Meer, Walter J. J. Gerrits, Alfons J. M. Jansman, Bas Kemp, J. Elizabeth Bolhuis. PLOS, Published: May 8, 2017

Abstract

The tendency to reduce crude protein (CP) levels in pig diets to increase protein efficiency may increase the occurrence of damaging behaviours such as ear and tail biting, particularly for pigs kept under suboptimal health conditions. We studied, in a 2×2×2 factorial design, 576 tail-docked growing-finishing entire male pigs in 64 pens, subjected to low (LSC) vs. high sanitary conditions (HSC), and fed a normal CP (NP) vs. a low CP diet (LP, 80% of NP) ad libitum, with a basal amino acid (AA) profile or supplemented AA profile with extra threonine, tryptophan and methionine. The HSC pigs were vaccinated in the first nine weeks of life and received antibiotics at arrival at experimental farm at ten weeks, after which they were kept in a disinfected part of the farm with a strict hygiene protocol. The LSC pigs were kept on the same farm in non-disinfected pens to which manure from another pig farm was introduced fortnightly. At 15, 18, and 24 weeks of age, prevalence of tail and ear damage and of tail and ear wounds was scored. At 20 and 23 weeks of age, frequencies of biting behaviour and aggression were scored for 10×10 min per pen per week. The prevalence of ear damage during the finisher phase (47 vs. 32% of pigs, P < 0.0001) and the frequency of ear biting (1.3 vs. 1.2 times per hour, P = 0.03) were increased in LSC compared with HSC pigs. This effect on ear biting was diet dependent, however, the supplemented AA profile reduced ear biting only in LSC pigs by 18% (SC × AA profile, P < 0.01). The prevalence of tail wounds was lower for pigs in LSC (13 ± 0.02) than for pigs in HSC (0.22 ± 0.03) in the grower phase (P < 0.007). Regardless of AA profile or sanitary status, LP pigs showed more ear biting (+20%, P < 0.05), tail biting (+25%, P < 0.10), belly nosing (+152%, P < 0.01), other oral manipulation directed at pen mates (+13%, P < 0.05), and aggression (+30%, P < 0.01) than NP pigs, with no effect on ear or tail damage. In conclusion, both low sanitary conditions and a reduction of dietary protein increase the occurrence of damaging behaviours in pigs and therefore may negatively impact pig welfare. Attention should be paid to the impact of dietary nutrient composition on pig behaviour and welfare, particularly when pigs are kept under suboptimal (sanitary) conditions.

Mixing weaned piglets did affect tail biting

The effect of mixing piglets after weaning on the occurrence of tail-biting during rearing
By Christina Veit, Kathrin Büttner, Imke Traulsen, Marvin Gertz, Mario Hasler, Onno Burfeind, Elisabeth grosse Beilage, Joachim Krieter, 2017. Livestock Science 201: 70–73.

The aim of this study was to investigate the effects on tail-biting during rearing of housing piglets of the same litter compared to piglets from different litters. The treatments “litter-wise” (LW, n =240) and “mixed litters” (ML, n =238) were housed in five identical units. Each tail was scored regarding tail lesions and tail losses once per week with a four-point score (0= no damage/original length to 3= severe damage/total loss). The effect of week after weaning had highly significant influences on tail lesions (p<0.001). Tail-biting started in the second week after weaning, with an increasing severity during rearing. First tail losses were observed in the fourth week after weaning. The batch and the interaction between treatment and batch had highly significant influences on tail losses at the end of rearing (p<0.001). Depending on batch, piglets in the LW or ML treatment were more affected by tail-biting.