Category Archives: Enrichment

Early intervention with enrichment can prevent tail biting outbreaks in weaner pigs

Early intervention with enrichment can prevent tail biting outbreaks in weaner pigs
Lahrmann et al. 2018. Livestock Science.

Highlights

• Providing extra enrichment as an early intervention reduced tail biting outbreaks.
• Tail damage was observed among weaner pigs with intact tails in 58 of 60 pens.
• Solitary tail damage did occur without escalating into tail biting outbreaks.

Abstract

Tail biting is a serious animal welfare problem in the modern pig production. A frequently studied preventive measure is enrichment materials, and increasing levels of enrichment materials, especially litter materials, reduces the risk of tail biting. However, permanent access to litter materials, can cause blockage of the slurry system and increase production cost. The aim of the present study was, therefore, to investigate if providing extra enrichment material, when observing the first tail damage could reduce the prevalence of tail biting outbreaks. The study included 1804 weaner pigs from 7 to 30 kg distributed in 60 pens with intact tails. As basic enrichment material, pens were equipped with two wooden sticks and daily provided with approximately 400 g of fine chopped straw. From outside the pen pigs were checked for tail damages three times weekly. When the first tail damage (fresh or scabbed) was recorded, the pen was assigned to one of four treatments; chopped straw (approximately 200 g/pen) on the floor (straw), haylage in a spherical cage (haylage), hanging rope with a sweet block (rope) or no extra material (control). From first treatment day and until a tail biting outbreak, tails were scored three times weekly. A tail biting outbreak occurred when four pigs in a pen had a tail damage, irrespective of wound freshness. The experiment was designed to compare the prevalence of tail biting outbreaks in each of the extra material group with the control group. A treatment was carried out in 44 of the 60 pens: 10 pens with straw, 8 pens with haylage, 7 pens with rope and 19 control pens. The risk of a tail biting outbreak was significantly lower in pens with haylage and straw compared with control pens (P < 0.05), and there tended to be fewer tail biting outbreaks in rope-pens compared with control pens (P = 0.08). The results should, though, be interpreted with caution due to the relatively small sample size. In control pens with no intervention, a tail biting outbreak developed in 42% of the pens within two to five days after the first tail damage was observed, whereas a tail biting outbreak did not occur in 32% of the control pens. In conclusion, a regular tail inspection and the use of extra enrichment material, when the first minor tail damage occur, could be one way to reduce the prevalence of tail biting outbreaks.

Indirect Genetic Effects for Growth Rate in Domestic Pigs Alter Aggressive and Manipulative Biting Behaviour

Indirect Genetic Effects for Growth Rate in Domestic Pigs Alter Aggressive and Manipulative Biting Behaviour
By Irene Camerlink, Winanda W. Ursinus, Piter Bijma, Bas Kemp, J. Elizabeth Bolhuis. 2015. Behavior Genetics 45: 117–126.

Indirect genetic effects (IGEs) are heritable effects of an individual on phenotypic values of others, and may result from social interactions. We determined the behavioural consequences of selection for IGEs for growth (IGEg) in pigs in a G × E treatment design. Pigs (n = 480) were selected for high versus low IGEg with a contrast of 14 g average daily gain and were housed in either barren or straw-enriched pens (n = 80). High IGEg pigs showed from 8 to 23 weeks age 40 % less aggressive biting (P = 0.006), 27 % less ear biting (P = 0.03), and 40 % less biting on enrichment material (P = 0.005). High IGEg pigs had a lower tail damage score (high 2.0; low 2.2; P = 0.004), and consumed 30 % less jute sacks (P = 0.002). Selection on high IGEg reduced biting behaviours additive to the, generally much larger, effects of straw-bedding (P < 0.01), with no G × E interactions. These results show opportunities to reduce harmful biting behaviours in pigs.

Two-level pen may be feasible option to increase space allowance and to create functional areas in a piglet pen

Use of space and behavior of weaned piglets kept in enriched two-level housing system
By Michaela Fels, Franziska Lüthje, Alice Faux-Nightingale & Nicole Kemper. 2018 Journal of Applied Animal Welfare Science

In this study, the possibility of introducing an elevated platform to a piglet pen was explored as a way of increasing available space and creating functional areas. On the platform, nine different manipulable materials were offered. In four batches, 40 weaned piglets were kept for five weeks in the two-level pen. Video recordings were taken two days per week. In the afternoon, more piglets were on the platform than in the morning or at night (7.2 ± 0.1 vs. 4.9 ± 0.1 vs. 0.6 ± 0.1 piglets/5 minutes; p < .05). The area under the platform was preferred more in the morning and at night than in the afternoon (18.5 ± 0.1 vs. 21.6 ± 0.2 vs. 12.5 ± 0.1 piglets/5 minutes; p < .05). Up to 36 piglets were counted there simultaneously, mainly in the recumbent position. On and under the platform, air velocity and ammonia concentration were within the recommended ranges. The study concluded that a two-level pen is a feasible option to increase space allowance and to create functional areas in a piglet pen.

Curly pig tail farming in Finland and Italy (two EC videos)

EU legislation on the welfare of pigs (Council Directive 2008/120/EC laying down minimum standards for the protection of pigs) does not allow routine tail-docking and requires farmers to provide to their pigs “manipulable material” such as straw, hay or sawdust.
To better inform farmers how to prevent routine tail docking, the Commission developed educational materials. The two videos present success stories in achieving the goal of rearing not-tailed pigs.

A Finnish farming with an intensive system rearing piglets with intact, curly tails.

An Italian farmer proud of rearing curly tails on straw

New book: Advances in Pig Welfare

New book: Advances in Pig Welfare
1st Edition
Editors: Marek Špinka
Hardcover ISBN: 9780081010129
Imprint: Woodhead Publishing (Elsevier)
Published Date: 10th November 2017
Page Count: 506

Table of Contents

Part One: Pig Welfare Hotspots
1. Overview of commercial pig production systems and their main welfare challenges* – Lene Juul Pedersen
2. Sow welfare in the farrowing crate and alternatives*
3. Piglet mortality and morbidity: inevitable or unacceptable?*
4. Lifetime consequences of the early physical and social environment of piglets* – Helena Telkänranta, Sandra Edwards
5. Tail biting* – Anna Valros
6. Manipulable materials* – Marc Bracke
7. Mitigating hunger in pregnant sows*
8. Aggression in group housed sows and fattening pigs
9. Handling and transport of pigs
10. Slaughter of pigs

Part Two: Pig Welfare Emerging Topics
11. The pain-sensitive pig* – Mette S Herskin, Pierpaolo Di Giminiani
12. On-farm and post-mortem pig health status assessment
13. Pig-human interactions: Pig-human interactions: creating a positive perception of humans to ensure pig welfare*
14. Breeding for pig welfare; opportunities and challenges*
15. Positive pig welfare
16. Pigs as laboratory animals* – Jeremy Marchant-Forde, Mette S. Herskin

Chapters marked with * have (co-)authors involved in FareWellDock. Chapters with stated authors only have FareWellDock partners as (co-)authors.

Description

Advances in Pig Welfare analyzes current topical issues in the key areas of pig welfare assessment and improvement. With coverage of both recent developments and reviews of historical welfare issues, the volume provides a comprehensive survey of the field.
The book is divided into two sections. Part One opens with an overview of main welfare challenges in commercial pig production systems and then reviews pig welfare hot spots from birth to slaughter. Part Two highlights emerging topics in pig welfare, such as pain and health assessment, early socialization and environmental enrichment, pig-human interactions, breeding for welfare, positive pig welfare and pigs as laboratory animals.
This book is an essential part of the wider ranging series Advances in Farm Animal Welfare, with coverage of cattle, sheep, pigs and poultry.
With its expert editor and international team of contributors, Advances in Pig Welfare is a key reference tool for welfare research scientists and students, veterinarians involved in welfare assessment, and indeed anyone with a professional interest in the welfare of pig. View less >

Key Features
•Provides in-depth reviews of emerging topics, research, and applications in pig welfare
•Analyzes on-farm assessment of pig welfare, an extremely important marker for the monitoring of real welfare impacts of any changes in husbandry systems
•Edited by a leader in the field of pig welfare, with contributing experts from veterinary science, welfare academia, and practitioners in industry

Readership
Animal Welfare research scientists, Postgraduate students, Policy makers and stakeholders, R&D managers

The book may be ordered here.

Pig enrichment affects immune response to disease

Effect of enriched housing on levels of natural (auto-)antibodies in pigs co-infected with porcine reproductive and respiratory syndrome virus (PRRSV) and Actinobacillus pleuropneumoniae.
Lu Luo, Ingrid Daniëlle Ellen van Dixhoorn, Inonge Reimert, Bas Kemp, Jantina Elizabeth Bolhuis and Hendrik Karel Parmentier 2017. Vet Res (2017) 48:75.

Abstract

Housing of pigs in barren, stimulus-poor housing conditions may influence their immune status, including antibody
responses to (auto-)antigens, and thus affect immune protection, which will influence the onset and outcome of
infection. In the present study, we investigated the effects of environmental enrichment versus barren housing on the
level of natural (auto-)antibodies (NA(A)b) and their isotypes (IgM and IgG) binding keyhole limpet hemocyanin (KLH),
myelin basic protein (MBP), and phosphorycholine conjugated to bovine serum albumin (PC-BSA) in pigs co-infected
with porcine reproductive and respiratory syndrome virus (PRRSV ) and Actinobacillus pleuropneumoniae (A. pleuro-pneumoniae). Pigs (n= 56) were housed in either barren or enriched pens from birth to 54 days of age. They were infected with PRRSV on 44 days of age, and with A. pleuropneumoniae 8 days later. Blood samples were taken on 7 dif-ferent sampling days. Housing significantly affected the overall serum levels of NA(A)b binding KLH, MBP and PC-BSA, and before infection barren housed pigs had significantly higher levels of NA(A)b than enriched housed pigs, except for KLH-IgM and PC-BSA-IgG. Infection only affected the IgM, but not the IgG isotype. Moreover, changes in MBP-IgM and PC-BSA-IgM following infection were different for enriched and barren housed pigs. These results suggest that the effect of infection on NA(A)b is influenced by housing conditions and that NA(A)b, especially IgM may be affected by infection.

Can enrichment help reduce tail docking?

In several episodes, leading welfare researchers explain the results they obtained within the international framework ‘FareWellDock’. This project investigates how to steer away from tail docking. Swedish and Danish researchers took a look at straw – does its use reduce the occurrence of tail biting?

Read more in Pig Progress.

From the article:
Tail docking is completely banned in Sweden, Finland and Switzerland.

Science suggests that lack of proper manipulable material is one of several major risk factors for tail biting.

A moderate amount of straw (150 g/pig/day) reduced the risk of injurious tail biting by more than two-fold, while docking seemed to be more effective as it reduced the risk by more than four-fold.

A combination of straw and increased space (1.2 m2 per pig) reduced the risk (of first occurrence) in undocked pigs to the same level as found in docked pigs kept under high stocking density (0.72 m2 per pig) without straw.

To provide a suitable outlet for exploratory behaviour under production conditions, materials have to be varied and complex, and are most effective when easily destroyed by chewing, or if they are edible.

Increasing the amount of straw from 10 to up to 400g/pig/day had multiple positive effects by progressively reducing the occurrence of tail injuries and stomach ulcers, increasing growth rate, increasing straw-directed behaviour, and reducing redirected behaviours towards other pigs.

Left-over straw may be a promising candidate method to screen for appropriate level of straw allocation.

Practical guide to enrichment for pigs

A Practical Guide to Environmental Enrichment for Pigs – A handbook for pig farmers. By AHDB Pork, UK

“This guide aims to give practical advice to pig farmers surrounding the complex
issue of providing suitable environmental enrichment to pigs. It provides
useful information from the knowledge of farmers, researchers and scientific
literature on the different ways environmental enrichment can be provided for
differing types of housing and systems. The information is set out in sections
by housing type, and in each, the types of enrichments that are most suited
to each system are discussed, including their properties, how to present
the enrichment, quantities and practical considerations, such as ease of
installation, maintenance and costs.” (cited from the introduction in the guide).

 

Is it possible to get rid of tail docking

Is it possible to get rid of tail docking? By Vincent ter Beek 2017. Article in PigProgress about FareWellDock.

Tail docking is a well-known practice in pig production, but it is also heavily criticised. An international team of researchers dived into the topic and wondered what its exact effects are on pigs – and what alternatives there are to avoid tail biting….

Read more @ PigProgress.

Note: This article is an approved summary of the Executive Summary which was published earlier this year at http://farewelldock.eu. In future issues of Pig Progress, to be published later this year, several participating researchers in this project will delve deeper into the individual topics they encountered.

Enrichment may affect decision making in pigs

Effects of environmental enrichment on decision-making behavior in pigs
by F. Josef van der Staay, Johanna A. van Zutphen, Mirjam M. de Ridder, Rebecca E. Nordquist, 2017. Applied Animal Behaviour Science.

Abstract

The animal’s emotional state, eventually modulated by environmental conditions, may affect cognitive processes such as interpretation, judgement and decision making behaviour. The Iowa Gambling Task (IGT) is a common method to examine decision making behavior in humans in terms of risk avoidance and risk taking that reflects the underlying emotional state of the subject. In the present study, we investigated the influence of environmental conditions on decision-making in pigs. To assess decision making behavior in pigs, the Pig Gambling task has been developed. In this task, the pig can choose between two alternatives. The pigs can make advantageous or disadvantageous choices, where advantageous, low risk choices deliver smaller, but more frequent rewards, whereas disadvantageous, high risk choices yield larger, but less frequent rewards. In the long run, over a series of successive trials, the advantageous choices will yield more reward and less punishment, where punishment consists of delivering reward into the central food trough, but making it inaccessible. After habituation to testing apparatus and testing methods during the course of approximately 4 weeks, all pigs learned to discriminate between the advantageous and disadvangeous alternatives (acquisition phase) at the age of 9 weeks. After a 14-week retention interval, at the age of 24 weeks, retention performance was tested (retention phase). In both phases, 20 trials per day were given to a total of 120 trials. Saliva and hair samples were collected once at the end of both phases for determining cortisol, and body mass was measured at the end of the retention phase. The pigs increased the number of advantageous choices during the course of training. In in the acquisition phase, barren-housed pigs chose the advantageous options more often compared to environmentally enriched pigs. No differences werer found during the retention phase. All pigs made less advantageous choices at the start of the retention phase than at the end of the acquisition phase. The level of hair cortisol was higher in the barren-housed than in the enriched-housed pigs. This difference was more pronounced after acquisition than after retention testing. No other differences were found for cortisol in saliva and hair. The environments did not differentially affect body mass at the end of the study. Summarizing, housing in a barren environment appears to be more stressful than housing in an enriched environment, as indicated by higher hair cortisol levels in barren-housed pigs, but it also improved acquisition of the PGT.