Histopathological Characterization of Tail Injury and Traumatic Neuroma Development after Tail Docking in Piglets

Histopathological Characterization of Tail Injury and Traumatic Neuroma Development after Tail Docking in Piglets. By: D.A. Sandercock, S.H. Smith, P. Di Giminiani, S.A. Edwards, 2016. Journal of Comparative Pathology 155: 40-49.

Abstract

Tail docking of neonatal pigs is widely used as a measure to reduce the incidence of tail biting, a complex management problem in the pig industry. Concerns exist over the long-term consequences of tail docking for possible tail stump pain sensitivity due to the development of traumatic neuromas in injured peripheral nerves. Tail stumps were obtained post mortem from four female pigs at each of 1, 4, 8 and 16 weeks following tail amputation (approximately two-thirds removed) by a gas-heated docking iron on post natal day 3. Tissues were processed routinely for histopathological examination. Non-neural inflammatory and reparative epidermal and dermal changes associated with tissue thickening and healing were observed 1 to 4 months after docking. Mild neutrophilic inflammation was present in some cases, although this and other degenerative and non-neural reparative changes are not likely to have caused pain. Traumatic neuroma and neuromatous tissue development was not observed 1 week after tail docking, but was evident 1 month after tail docking. Over time there was marked nerve sheath and axonal proliferation leading to the formation of neuromata, which were either localized and circumscribed or comprised of multiple axons dispersed within granulation tissue. Four months after tail resection, neuroma formation was still incomplete, with possible implications for sensitivity of the tail stump.

Corrigendum to “Histopathological Characterization of Tail Injury and Traumatic Neuroma Development after Tail Docking in Piglets” J Comp Pathol 155 (1) (2016) 40-49.

The authors wish to clarify terminology used in their paper entitled ‘Histopathological characterization of tail injury and traumatic neuroma development after tail docking in piglets’ and thank the Editor for the opportunity to do so. In the absence of a specific immunohistochemical label for detection of axons, the words ‘axon/axonal’ were inaccurately used and should be replaced by ‘Schwann cell’. Without more specific proof, it
certainly does not confirm, or necessarily infer, conduction. Secondly, ‘S100 neurofilament’ was inadvertently used instead of simply ‘S100’. The authors apologise for this error, which was wholly editorial on their part. Finally, in our opinion, the literature definitions of traumatic neuromas are such that there is likely to be some disagreement as to their required component features, particularly at different stages of lesion development, in different species and in different age groups of animals. In our paper, descriptions of traumatic neuroma presence and development were also based on haematoxylin and eosin staining and not solely confined to S100 immunolabelling. To this end, features such as variably-sized microfascicles, disorderly (often circumferential) neural proliferation and nerve fibres turning back on themselves are consistent with previous reports on traumatic neuromas in a number of species, including pigs.
While the aforementioned errors are regretted, this work was intended as a descriptive morphological characterization of a wide range of histopathological changes over known time points post docking. We have had some criticism that, due to our use of the word axonal, we have implied or claimed innervation, and thus pain sensation,
during the weeks after docking. This was not our intention – rather, our opinion is neutral in terms of whether or not traumatic neuromas are painful. The last sentence of the paper acknowledged that this work could not determine that. This study was considered descriptive and foundational, to serve as a platform for further investigation.
Its take-home message, irrespective of the error in terminology, is that neural proliferation consistent with traumatic neuroma development appears to be still ongoing at 16 weeks after tail docking.