Tag Archives: Denmark

FareWellDock project meeting in Vejle, Denmark

The last FareWellDock project meeting was held in Vejle, Denmark, October 27 and 28 2016.

We first discussed the stakeholder meeting in Grange, Ireland. We contributed to the meeting with several presentations. The presentations of the meeting can be accessed here. The video  recordings will be available for some time after the meeting via this link. Striking differences exist between EU countries on their attitude and effort regarding tail docking.

The progress in the various work packages was discussed. We are on schedule in terms of milestones and deliverables.

Tail biting is a problem that may easily be overlooked. Sometimes all pigs in a pen turn out to be affected only after detecting the first pig. A standardized protocol could improve the recording and management of tail biting across research projects and across member states.

Over the past year our website has been visited more frequently (see the figure below).

This year (2016) FareWellDock project will end as a project and we intend to continue as a network. Interested scientists and other interested persons are invited to join the mailing list (please contact Anna.Valros @ helsinki.fi ).

 

Participants of the FareWellDock meeting in Vejle, Denmark

fwd-prtscr-page-views-dashboard-on-year-281016

Temporal changes in mechanical nociceptive thresholds in juvenile pigs subjected to surgical tail amputation: a model of injury induced by tail biting

Temporal changes in mechanical nociceptive thresholds in juvenile pigs subjected to surgical tail amputation: a model of injury induced by tail biting. By Di Giminiani, P., E. Malcolm, M. Leach, M. Herskin, D. Sandercock, S. Edwards, 2016. Royal Dublin Society: Abstracts book of the 24th International Pig Veterinary Society (IPVS) Congress, Dublin, Republic of Ireland 7-10th June 2016. p. 649.

Abstract

Introduction: Tail biting is a global welfare problem in the pig industry leading to significant tail injury and potential carcass rejection. The temporal effects of such injuries and subsequent healing are presently unknown, although limb amputation in humans can lead to abnormal neural activity and decreased nociceptive thresholds. In order to evaluate potential sensitisation following tail damage, we created a model by surgical amputation of tails, and assessed mechanical nociceptive thresholds.

Materials and Methods: Surgical tail resection was performed to assess the influence of age, extent of tail amputated and time since amputation on thresholds of mechanical nociception. To evaluate the effect of age at the time of injury, female pigs underwent surgery at 9 weeks (±3 days ‘weaner’) (n=19) or 17 weeks (±3 days ‘finisher’) (n=43). The effect of time after amputation was evaluated on 24 pigs at 8 weeks, and 38 pigs at 16 weeks after surgery. The effect of the extent of tail amputated was assessed by assigning the pigs to 3 treatments (‘Intact’: sham-amputation; ‘short tail’: 2/3 of tail removed; ‘long tail’: 1/3 of tail removed). A Pressure Application Measurement device was used to record mechanical nociceptive thresholds (tail flick or tail clamp withdrawal responses). Within a single session, three stimuli were applied to a skin area proximal to the site of amputation, 3 days pre-surgery, 1 week and either 8 or 16 weeks post-amputation.

Results: Across the two amputation ages, results indicated that tail amputation induced a significant reduction (P<0.05) in mechanical nociceptive thresholds in short and long tails one week after surgery. The same treatment effect was observed at 16 weeks after amputation performed at 9 weeks of age (P<0.05). For surgeries performed at 17 weeks of age, thresholds tended to be lower in short compared to intact tails (P=0.081) and significantly lower (P<0.05) in long tail pigs 8 weeks after amputation. No significant difference was observed at 16 weeks following surgeries performed at 17 weeks of age.

Conclusion: These results show that surgical amputation of pig tails leads to decreased cutaneous mechanical nociceptive thresholds in the skin area proximal to the site of injury. Results indicated that severe tail injury occurring in the weaner period may be associated with sensitisation up to 16 weeks following the injury. In contrast, injuries occurring in the finishing period appeared to be associated with shorter lasting mechanical sensitisation, resolving within 16 weeks.

Poster Di Giminiani IPVS

 

Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails

Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails. By Pierpaolo Di Giminiani, Dale A. Sandercock, Emma M. Malcolm, Matthew C. Leach, Mette S. Herskin and Sandra A. Edwards. 2016. Physiology & Behavior 165: 119–126.

Highlights

• Mechanical nociceptive thresholds were quantified for the first time in pig tails.
• The PAM device allowed determining anatomical and age-specific thresholds in pigs.
• A platform for the assessment of painful conditions in pigs is proposed.

Abstract

The assessment of nociceptive thresholds is employed in animals and humans to evaluate changes in sensitivity potentially arising from tissue damage. Its application on the intact pig tail might represent a suitable method to assess changes in nociceptive thresholds arising from tail injury, such as tail docking or tail biting. The Pressure Application Measurement (PAM) device is used here for the first time on the tail of pigs to determine the reliability of the methods and to provide novel data on mechanical nociceptive thresholds (MNT) associated with four different age groups (9, 17, 24 and 32 weeks) and with proximity of the target region to the body of the animal. We recorded an overall acceptable level of intra-individual reliability, with mean values of CV ranging between 30.1 and 32.6%. Across all age groups, the first single measurement of MNT recorded at region 1 (proximal) was significantly higher (P b 0.05) than the following two. This was not observed at tail regions 2 and 3 (more distal). Age had a significant effect (P b 0.05) on the mean thresholds of nociception with increasing age corresponding to higher thresholds. Furthermore, a significant effect of proximity of tail region to the body was observed (P b 0.05), with MNT being higher in the proximal tail region in pigs of 9, 17 and 24 weeks of age.
There was also a significant positive correlation (P b 0.05) between mechanical nociceptive thresholds and age/body size of the animals.
To the best of our knowledge, no other investigation of tail nociceptive thresholds has been performed with the PAM device or alternative methods to obtain mechanical nociceptive thresholds in intact tails of pigs of different age/body size. The reliability of the data obtained with the PAM device support its use in the measurement of mechanical nociceptive threshold in pig tails. This methodological approach is possibly suitable for assessing changes in tail stump MNTs after tail injury caused by tail docking and biting.

Effects of tail docking and docking length on neuroanatomical changes in healed tail tips of pigs

Effects of tail docking and docking length on neuroanatomical changes in healed tail tips of pigs
By M. S. Herskin, K. Thodberg and H. E. Jensen. 2015. Animal 9: 677-681.

Abstract

In pig production, piglets are tail docked at birth in order to prevent tail biting later in life. In order to examine the effects of tail docking and docking length on the formation of neuromas, we used 65 pigs and the following four treatments: intact tails (n=18); leaving 75% (n=17); leaving 50% (n=19); or leaving 25% (n=11) of the tail length on the pigs. The piglets were docked between day 2 and 4 after birth using a gas-heated apparatus, and were kept under conventional conditions until slaughter at 22 weeks of age, where tails were removed and examined macroscopically and histologically. The tail lengths and diameters differed at slaughter (lengths: 30.6±0.6; 24.9±0.4; 19.8±0.6; 8.7±0.6 cm; P<0.001; tail diameter: 0.5±0.03; 0.8±0.02; 1.0±0.03; 1.4±0.04 cm; P<0.001, respectively). Docking resulted in a higher proportion of tails with neuromas (64 v. 0%; P<0.001), number of neuromas per tail (1.0±0.2 v. 0; P<0.001) and size of neuromas (1023±592 v. 0 μm; P<0.001). The results show that tail docking piglets using hot-iron cautery causes formation of neuromas in the outermost part of the tail tip. The presence of neuromas might lead to altered nociceptive thresholds, which need to be confirmed in future studies.

Behavioural differences between weaner pigs with intact and docked tails

Behavioural differences between weaner pigs with intact and docked tails
By Paoli, MA; Lahrmann, HP; Jensen, T; D’Eath, RB, 2016. Animal Welfare 25: 287-296.

Abstract

Tail-biting in pigs (Sus scrofa) reduces welfare and production. Tail-docking reduces (but does not eliminate) tail-biting damage. The reason tail-docking reduces tail damage is unknown. It may reduce pigs attraction to tails (H1), or increase tails’ sensitivity to investigation (H2). To investigate these hypotheses, behavioural differences between 472 individually marked grower pigs with intact tails (nine groups of 25–34 pigs) or docked tails (nine groups of 22–24 pigs) were observed from 5–8 weeks of age on a commercial farm in Denmark. Pens had part-slatted floors, dry feeding and two handfuls of straw per day, and enrichment objects were provided. Behavioural sampling recorded actor and recipient for tail-directed (tail interest, tail in mouth, tail reaction) and investigatory behaviours (belly-nosing, ear-chewing, interaction with enrichment). Scan sampling recorded pig posture/activity and tail posture. Intact-tail pigs performed more overall investigatory behaviours but tail type did not affect the amount of tail-directed behaviours. Larger pigs performed more investigatory and tail-directed behaviours than smaller pigs and females performed slightly more tail investigation. Tail-directed behaviours were not consistent over time at the individual or group level. However, ear-chewing was consistent at the group level. One group with intact tails was affected by a tail-biting outbreak in the final week of the study (evidenced by tail-damage scores) and showed an increase over time in tail posture (tail down) and tail-directed behaviour but not activity. Overall, there were few behavioural differences between docked and undocked pigs: no evidence of reduced tail investigation (H1) or an increased reaction to tail investigation (H2) in docked pigs, and yet docked pigs had less tail damage. We propose that docking might be effective because longer tails are more easily damaged as pigs are able to bite them with their cheek teeth.

Impact of straw on gastric ulceration in pigs

Impact of the amount of straw provided to pigs kept in intensive production conditions on the occurrence and severity of gastric ulceration at slaughter.
Herskin MS, Jensen HE, Jespersen A, Forkman B, Jensen MB, Canibe N, Pedersen LJ. 2016. Res Vet Sci. 104: 200-6.

Abstract

This study examined effects of the amount of straw offered on occurrence and severity of gastric lesions in pigs kept in pens (18 pigs, 0.7m(2)/pig) with partly slatted flooring and 10, 500 or 1000g straw/pig/day from 30kg live weight. The pigs had ad libitum access to dry feed. Forty-five pigs were used, three from each of 15 pens. After euthanisia, the dimension of the non-glandular region of the stomach was measured. Lesions were characterized and scored. Irrespective of straw provided, 67% of the pigs showed signs of gastric pathology. Pigs provided with 500 or 1000g straw were pooled as ‘permanent access’. The proportion of pigs with ulcerations was reduced by permanent access to straw (7 vs. 33%; P<0.05), suggesting that permanent access to straw may improve animal health, and be considered as one possible strategy to limit gastric ulceration in pigs.

500gr straw/pig/day
500gr straw/pig/day
10gr straw/pig/day
10gr straw/pig/day

Can tail damage outbreaks in the pig be predicted by behavioural change?

Vestbjerg Larsen, M.L., Andersen, H.M-L, Pedersen, L.J. 2016. Can tail damage outbreaks in the pig be predicted by behavioural change? The Veterinary Journal 209: 50-56.

Abstract

Tail biting, resulting in outbreaks of tail damage in pigs, is a multifactorial welfare and economic problem which is usually partly prevented through tail docking. According to European Union legislation, tail docking is not allowed on a routine basis; thus there is a need for alternative preventive methods. One strategy is the surveillance of the pigs’ behaviour for known preceding indicators of tail damage, which makes it possible to predict a tail damage outbreak and prevent it in proper time. This review discusses the existing literature on behavioural changes observed prior to a tail damage outbreak. Behaviours found to change prior to an outbreak include increased activity level, increased performance of enrichment object manipulation, and a changed proportion of tail posture with more tails between the legs. Monitoring these types of behaviours is also discussed for the purpose of developing an automatic warning system for tail damage outbreaks, with activity level showing promising results for being monitored automatically. Encouraging results have been found so far for the development of an automatic warning system; however, there is a need for further investigation and development, starting with the description of the temporal development of the predictive behaviour in relation to tail damage outbreaks.

Tail postures
Tail postures
Pigs resting on straw
Pigs resting on straw

See also the related editorial:

Zonderland, J.J. and Zonderland, M.A., 2016. Behavioural change by pig producers is the key factor in raising pigs with intact tails (Editorial). The Veterinary Journal.

How much straw is enough?

Jensen, M.B., Herskin, M, Forkman, B, Pedersen, L.J., 2015. Effect of increasing amounts of straw on pigs’ explorative behaviour. Applied Animal Behaviour Science 171, 58–63.

Highlights

  • We investigated the effect of straw amount on pigs’ time spent manipulating straw.
  • We investigated the effect of straw amount on pigs’ simultaneous straw manipulation.
  • Increasing straw from 10 to 430 g/pig/day increased both measures.
  • Increasing straw above approx. 250 g did not significantly increase the behaviour further.

Abstract

According to European legislation, pigs must have permanent access to sufficient quantity of material to enable manipulation activities. However, few studies have quantified how much straw is needed to fulfil the requirements of growing pigs. We investigated the effect of increasing amount of straw on pigs’ manipulation of the straw, and hypothesised that after a certain point increasing straw amount will no longer increase oral manipulation further. From 30 to 80 kg live weight, pigs were housed in 90 groups of 18 pigs in pens (5.48 m × 2.48 m) with partly slatted concrete floor and daily provided with fresh uncut straw onto the solid part of the floor. Experimental treatments were 10, 80, 150, 220, 290, 360, 430 or 500 g straw per pig and day. At 40 and 80 kg live weight, the time spent in oral manipulation of the straw by three focal pigs per pen (large, medium and small sized) were recorded along with the percentage of pigs manipulating straw simultaneously. This was recorded in three 1-h intervals (1 h before and 1 h after straw allocation in the morning, as well as from 17 to 18 h in the afternoon). With increasing quantity of straw provided, we found a curvilinear (P < 0.01) increase in the time spent in oral manipulation of the straw. Smaller pigs spent more time manipulating straw than larger and medium sized pigs (367, 274 and 252 s/h for small, medium and large sized pigs, respectively; P < 0.001), and pigs spent more time manipulating straw at 40 kg than 80 kg live weight (356 vs. 250 s/h; P < 0.001). At both live weights, pigs spent most time manipulating straw during the hour after allocation of straw. Similar effects of increasing amounts of straw were found for the percentage of pigs engaged in simultaneous manipulation of the straw. Post hoc analyses were applied to estimate the point, after which additional straw did not increase manipulation of straw any further. For the time spent manipulating straw the estimated change point was 253 (approx. 95% confidence limits (CL) 148–358) g straw per pig and day. For the number of pigs simultaneously manipulating straw the change point was 248 (CL 191–304) g straw per pig and day. These results show that increasing the quantity of straw from minimal to approximately 250 g per pig and day increased the time spent in oral manipulation of the straw, as well as the occurrence of simultaneous straw manipulation.
Hence, data from the current experiment identified 250 g straw per pig per day as the amount of straw where a further increase in straw provision did not further increase neither time spent on oral manipulation of straw, nor the percentage of pigs simultaneously manipulating straw. This suggests that, within the current housing system and using this criterion, this amount of straw may be the biological turning point for increasing oral manipulation of straw.

Soundbites Pig Welfare Conference: 1. Introduction

On 29 – 30 April 2015 Danish Minister for Food, Agriculture and Fisheries, Dan Jørgensen hosted an international conference “Improving Pig Welfare – what are the ways forward?“.

During the two-day conference, top academics, experts and political stakeholders from around the world debated and worked to prepare the way forward in improving pig welfare in Europe and ultimately in the world. Ministers from the Netherlands, Germany and Sweden participated.

Below you find ‘soundbites’ from the conference, all more or less related to the subjects of study in the FareWellDock project. This is part 1. Parts 2-5 are other blog posts on this website.

It is truly remarkable that we have been able to gather almost four hundred participants to discuss the ways forward for pig welfare; some are joining us from as far away as the state of Iowa, USA, and Australia
Dan Jørgensen, Danish Minister for Food, Agriculture and Fisheries

fwd PWConf DK Minists IMG_1817c
Left to right: Dan Jørgensen, Minister for Food, Agriculture and Fisheries, DK. Sharon Dijksma, Minister for Agriculture, NL. Sven-Erik Bucht, Minister for Rural Affairs, SE. Christian Schmidt, Federal Minister of Food and Agriculture, DE.

At the conference a position paper was signed by
Christian Schmidt, Federal Minister of Food and Agriculture, DE
Sven-Erik Bucht, Minister for Rural Affairs, SE
Dan Jørgensen, Minister for Food, Agriculture and Fisheries, DK
Sharon Dijksma, Minister for Agriculture, NL

The position paper, final version(PDF)

Video of signing

Dan Jørgensen
Dan Jørgensen, Danish Minister for Food, Agriculture and Fisheries