Tag Archives: Finland

Is it possible to get rid of tail docking

Is it possible to get rid of tail docking? By Vincent ter Beek 2017. Article in PigProgress about FareWellDock.

Tail docking is a well-known practice in pig production, but it is also heavily criticised. An international team of researchers dived into the topic and wondered what its exact effects are on pigs – and what alternatives there are to avoid tail biting….

Read more @ PigProgress.

Note: This article is an approved summary of the Executive Summary which was published earlier this year at http://farewelldock.eu. In future issues of Pig Progress, to be published later this year, several participating researchers in this project will delve deeper into the individual topics they encountered.

FareWellDock Executive Summary

Tail biting constitutes a major welfare and health issue in commercial pig rearing, with significant negative economic consequences. Contrary to the aim of the EU directive (2001/93/EC), tail docking is still widely practiced in most EU countries as a measure to reduce the incidence of tail biting and concomitant pathologies. Mutilations are a general welfare concern in all species, and any efforts towards reducing the need for tail docking are important for the future sustainability of the EU pig sector. Sound policy making needs science-based risk assessment, including assessment of the severity of problems and effectiveness of solutions. The general objectives of the FareWellDock-project included estimation of the relative harms associated with tail docking and tail biting, and evaluation of the efficacy of some main preventive measures against tail biting, which could reduce the need for tail docking. The ultimate aim was to stimulate the development towards a non-docking policy in the EU.

The first objective of WP1 was to evaluate measures of acute and chronic pain in relation to tail damage. This included assessment of the short (acute trauma), medium (post trauma inflammation) and long term (traumatic neuroma formation) pain associated with tail docking in neonatal piglets, and the possible consequences for longer term fear of humans. In addition, the studies assessed the effects of tail-damage in more mature pigs to provide a basis for assessing the pain associated with being tail bitten in later life. Finally, studies were conducted to assess the effects of an NSAID analgesic on the short term responses to neonatal tail docking.

Experimental studies confirmed that piglets do experience pain when tail docked, and that pain relief treatment, such as meloxicam, can lessen but not abolish the physiological stress reaction to docking. Piglets which have been tail docked seem more fearful of people afterwards than undocked animals.  In docked tails, no difference in pain sensitivity of the tail (as measured by behavioural withdrawal) is detected after 8 weeks, but changes in the functioning of the sensory nerves from the tail can still be measured after 4 months, which suggests that the possibility for longer term pain exists. When the tail is damaged later in life, as happens with tail biting, changes in both tail stump sensitivity and nerve functioning can last for at least 4 months, and possibly beyond.

WP2 focused on the role of manipulable material when reducing the need for tail docking. The aim was to develop and validate ways to assess if on-farm use of manipulable material is sufficient to reduce tail biting. Further, the aim was to describe suitable methods for implementing the use of straw under commercial farming conditions and to investigate, in on-farm conditions, the efficiency of tail docking vs. enrichment given in sufficient quantity to reduce the occurrence of tail lesions.

A screening method to assess the appropriateness of the level of enrichment on-farm was developed and includes scoring of the amount of unsoiled straw, the behaviour, and ear, tail and flank lesions of the pigs. AMI (animal-material interaction) sensors were used e.g. to show that pigs in biter pens were more interested in novel ropes than pigs in control pens, that environmental enrichment may reduce exploratory behaviour of point-source objects, and that sick pigs, experimentally infected with streptococcus spp, were less interested in chain manipulation. The sensors appear to be a promising tool to assess the use of manipulable material by pigs. In countries (SE and FI) where tail docking is not done, farmers report using on average of 30 to 50 g of straw/pig/ day, equivalent to about 0.5 L/pig/day. A survey in SE revealed fewer injurious tail biting outbreaks on farms using larger amounts of straw. Larger amounts of straw were mainly used on farms having scrapers in the slurry channels. A large experimental study showed that a moderate amount of straw (150 gr/pig/day) reduced injurious tail-biting outbreak in finisher pigs by more than 50%, while docking seemed to be more effective as it reduced tail biting by more than four-fold. The effect of both measures was additive, i.e. docking and straw reduced tail biting 9 fold. Further, it was shown that increasing the amount of straw from 10 to up to 400 gr/pig/day had multiple positive effects by progressively reducing the occurrence of tail injuries and stomach ulcers, increasing growth rate, increasing straw-directed behaviour, and reducing redirected behaviours towards other pigs.

In WP3 the aim was to clarify the role of poor health in the causation of tail biting and victimization, and the aim was study early identification of tail-biting outbreaks. In addition, the aim to develop automated systems for early warning of tail biting outbreaks.

The results of experimental and on-farm studies showed that the social behaviour of sick pigs differs from healthy pen mates, as pigs with osteochondrosis received more sniffing and tail bites from their pen mates than healthy pigs, while pigs with mild respiratory disease tended to bite more at the ears and tails of pen mates than healthy pigs did. In addition, studies of cytokines suggest that low-grade inflammation may decrease activity and increase receiving sniffs and attacks from other pigs. Studies on data sets from commercial pig farms indicated that changes in feeding behaviour may be an important sign of an increased risk for tail biting to occur: Future tail bitten individuals showed a reduced feed intake already 2-3 weeks before tail damage became evident. Furthermore, feeding behaviour in groups which develop tail biting may differ from non-biting groups for at least ten weeks prior to  an injurious tail-biting outbreak. It was also shown that tail-chewing activity may start 2-3 weeks before tail damage can be seen. A detailed behavioural study of tail biting events revealed that there appears to be no such thing as a ‘typical’ tail-biting event and that the behaviour shown immediately before a tail-biting event does not differ from behaviour prior to another type of social interaction, namely ano-genital sniffing. Thus, it seems difficult to predict if a social event will escalate into tail biting or not. However, tail biting is more likely between pigs that have previously interacted. Data sets from several countries and studies indicated an association between tail-biting damage and tear staining, but the direction of this association is not clear.

In summary the project concluded on a set of practical recommendations, which have been published as part of four factsheets on the FareWellDock-webpage:

  • Avoid tail docking whenever possible because it definitely causes pain, induces long-term changes in sensory-nerve function and may impair the pigs’ confidence in humans.
  • Avoid tail biting, and hence the need for tail docking, by addressing risk factors on the farm.
  • Treat tail-bitten pigs promptly and consider pain relief.
  • To reduce injurious tail-biting outbreaks, use straw as it might be almost as effective as tail docking. For this purpose, the more straw the better.
  • To ensure that sufficient straw is allocated check that there is left-over straw before the next day’s allocation.
  • Keep your pigs healthy. This will be good both for productivity and also help avoid injurious tail-biting outbreaks.
  • If pigs show signs of illness, be more alert to tail biting risk.
  • Remove tail-bitten pigs promptly to avoid further damage and treat according to veterinary advice.
  • Pay special attention to groups of pigs where you see:
    • high or suddenly increased levels of general activity or exploration
    • tail manipulation or chewing
    • swinging or tucked tails
    • low or decreasing numbers of visits to an automatic feeder or reduced feed intake


Information on project activities and publications have been continuously published on the FareWellDock-webpage. To date, 16 scientific articles have been published, and 9 are in preparation. Communication to stakeholders has been active, both through the FareWellDock-webpage, including 97 blog posts, and by interviews in media in different countries, popular articles and presentations at producer seminars. In October 2016 the results were presented widely at the EU level to policy makers and other stakeholders at the ‘Meeting and Webinar on Actions to Prevent Tail biting and Reduce Tail docking of Pigs’, organized by the European Commission Directorate General for Health and Food Safety in Grange, Ireland.

Due to the positive experience of the cooperation a decision was made at the last project meeting in DK in October 2016 that we will continue our cooperation as the FareWellDock-network, also inviting further researchers and stakeholders to join. The first activity of the FWD-network will be to organise a satellite meeting at the Congress of the International Society for Applied Ethology in August 2017 in DK, and to launch an emailing list to make sure FWD-network members and other researchers keep updated on research progress and related topics.

FareWellDock logo

Factsheets FareWellDock project

The FareWellDock factsheets are out. Below you find the cover factsheet as well as the factsheets on tail docking, enrichment, health and the prediction of tail biting. This post shows images of the English versions, and  links to the pdf version of the English factsheets, as well as all factsheets in Danish, Dutch, Finnish, French, Italian, Norwegian and Swedish. Separate pages are available directly showing the factsheets in the other languages (Danish, Dutch, Finnish, French, Italian, Norwegian and Swedish).

Cover factsheet

Cover factsheet in English

Factsheet cover English (pdf)
Factsheet cover Danish (pdf)
Factsheet cover Dutch (pdf)
Factsheet cover Finnish (pdf)
Factsheet cover French (pdf)
Factsheet cover Italian (pdf)
Factsheet cover Norwegian (pdf)
Factsheet cover Swedish (pdf)

Tail docking

Factsheet 1 Tail docking English
Factsheet 1 Tail docking English (pdf)
Factsheet 1 Danish (pdf)
Factsheet 1 Dutch (pdf)
Factsheet 1 Finnish (pdf)
Factsheet 1 French (pdf)
Factsheet 1 Italian (pdf)
Factsheet 1 Norwegian
Factsheet 1 Swedish (pdf)


Factsheet 2 Enrichment English
Factsheet 2 Enrichment English (pdf)
Factsheet 2 Danish (pdf)
Factsheet 2 Dutch (pdf)
Factsheet 2 Finnish (pdf)
Factsheet 2 French (pdf)
Factsheet 2 Italian (pdf)
Factsheet 2 Norwegian (pdf)
Factsheet 2 Swedish (pdf)


Factsheet 3 Health English
Factsheet 3 Health English (pdf)
Factsheet 3 Danish (pdf)
Factsheet 3 Dutch (pdf)
Factsheet 3 Finnish (pdf)
Factsheet 3 French (pdf)
Factsheet 3 Italian (pdf)
Factsheet 3 Norwegian (pdf)
Factsheet 3 Swedish (pdf)

Prediction of tail biting

Factsheet 4 Prediction English

Factsheet 4 Prediction English (pdf)
Factsheet 4 Danish (pdf)
Factsheet 4 Dutch (pdf)
Factsheet 4 Finnish (pdf)
Factsheet 4 French (pdf)
Factsheet 4 Italian (pdf)
Factsheet 4 Norwegian (pdf)
Factsheet 4 Swedish (pdf)

Just a nice picture of what a pig’s tail should look like

What do you see?

Please have a look at this pig’s tail. You may note that contrary to most EU pigs, this Finnish pig has a curly tail. In addition, please note that this pig does not only has a curly tail. Its tail also has a hairy plume. That is what a pig’s tail should look like: It is the pig’s welfare thermometer.

Curly tail as sign of melting pig-welfare iceberg

The FareWellDock project has accumulated scientific information directed at reducing the need for tail docking in Europe. In this way it has contributed to ending the progressive melting of the pig-welfare iceberg. But sometimes, a picture says more than a thousand words, for the pig’s tail is an iceberg indicator for pig welfare.

Culty pig tail with brush

Curly pig tail (© Mari Heinonen).

Online Training Improves Understanding of Pig Welfare Legislation

A recent research paper has reported a positive effect of an online training tool on participants’ understanding of taildocking and enrichment legislation, as well as risk factors for tail biting. The training tool was aimed at official inspectors and others involved in enforcement of legislative requirements on pig farms. The research was a collaboration of 15 researchers from 9 EU countries, led by the University of Bristol, UK. The online training tool is free to use and is available in 7 different languages: English, French, German, Polish, Italian, Spanish and Dutch. It can be accessed here:

Click this link to access the EUWelNet Training Tool on pig enrichment and tail docking.

Hothersall, B., Whistance, L., Zedlacher, H., Algers, B., Andersson, E., Bracke, M., Courboulay, V., Ferrari, P., Leeb, C., Mullan, S., Nowicki, J., Meunier-Salaun, M-C., Schwarz, T., Stadig, L. & Main, D. 2016 Standardising the assessment of environmental enrichment and tail-docking legal requirements for finishing pigs in Europe. Animal Welfare 25:499-509.


An online training package providing a concise synthesis of the scientific data underpinning EU legislation on enrichment and taildocking of pigs was produced in seven languages, with the aim of improving consistency of professional judgements regarding legislation compliance on farms. In total, 158 participants who were official inspectors, certification scheme assessors and advisors from 16 EU countries completed an initial test and an online training package. Control group participants completed a second identical test before, and Training group participants after, viewing the training. In Section 1 of the test participants rated the importance of modifying environmental enrichment defined in nine scenarios from 1 (not important) to 10 (very important). Training significantly increased participants’ overall perception of the need for change. Participants then rated nine risk factors for tail-biting from 1 (no risk) to 10 (high risk). After training scores were better correlated with risk rankings already described by scientists. Scenarios relating to tail-docking and management were then described. Training significantly increased the proportion of respondents correctly identifying that a farm without tail lesions should stop tail-docking. Finally, participants rated the  importance of modifying enrichment in three further scenarios. Training increased ratings in all three. The pattern of results indicated that participants’ roles influenced scores but overall the training improved: i) recognition of enrichments that, by virtue of their type or use by pigs, may be insufficient to achieve legislation compliance; ii) knowledge on risk factors for tail-biting; and iii) recognition of when routine tail-docking was occurring.

EUWelNet Training Tool enrichment and tail docking

Note that the training tool is being used in Poland to train animal science students, farm assurance in the UK has shown recent interest in using the tool, and the Austrian pig health service is compiling a brochure based on EUWelNet on tail biting/enrichment material.

Tail-in-mouth behaviour in weaned piglets

Can tail-in-mouth behaviour in weaned piglets be predicted by behaviour and performance? By Camilla Munsterhjelm, Mari Heinonen, Anna Valros. In: Appl. Anim. Behav. Sci.


This study aimed to identify characteristics of pigs performing tail-in-mouth behaviour (TIM; P, n =34), their recipients (R, n =23) and neutral penmates (N, n =31) at two occasions, the first being at weaning (4 weeks of age) before TIM was observed in the pen and the second being at 9 weeks of age when TIM had emerged, but no clinical tail lesions were observed. The groups (n =22) were formed by siblings, two gilts and two castrates. Behaviour was analysed as 24-hour time budgets and continuously sampled during 30minutes of the active part of the day. Category (P, R, N) effects were analysed at individual and (directed) dyad level. P was born significantly smaller than R, but the difference had disappeared at 4 weeks. Growth or sex distribution did not differ between categories. Category differences in performed behaviour were evident at 4 weeks of age, when P showed more overall activity and environmental exploration as compared to R, as well as more bouts of tail-nosing than N. Different aspects of behaviour changed in the different categories between 4 and 9 weeks of age. In P social activity increased significantly and went from no preference at 4 weeks to a significant preference for social actions for R over N at 9 weeks. N was socially passive at 9 weeks while receiving more social behaviour than the other categories. These differences in behaviour suggest that the categories represented different phenotypes of pigs.

On-farm tail biting prevention in long-tailed pigs – results from a producer questionnaire in Finland

On-farm tail biting prevention in long-tailed pigs – results from a producer questionnaire in Finland. By Valros, A., C. Munsterhjelm, L. Hänninen, T. Kauppinen, M. Heinonen, 2016. Royal Dublin Society: Abstracts book of the 24th International Pig Veterinary Society (IPVS) Congress, Dublin, Republic of Ireland 7-10th June 2016. p. 144.


Introduction: Tail biting is a serious welfare problem in pigs, causing substantial economic losses. In the majority of the EU countries, tail docking is used to reduce the incidence of tail biting. However, many of the risk factors for tail biting are related to suboptimal management, and tail biting can be reduced by corrective management decisions. There are few studies on which preventive measures producers themselves value as most important.

Materials and Methods: A questionnaire was distributed via slaughterhouse webpages in 2015. Producers were asked to score the importance of handling different tail-biting risk factors on their own farms, as well as about which manipulable materials they use, and find efficient. In addition, we asked about their opinions on tail biting and tail docking. A total of 70 producers replied, 54 of these replies were regarding fattening pigs, and 16 regarding weaned pigs. The size of the pig units varied between 100 and 6400 pigs, with an average of 1307 pigs. Finland banned tail docking in 2003, so all farms raised long-tailed pigs only.

Results: On average, the producers reported a prevalence of tail biting of 2,3% on their farms, which corresponds well with values reported at Finnish abattoirs. Most producers found tail biting not to be a big problem on their farms and 62% of the farmers found it very unlikely that they would raise tail docked pigs even if it was legal in Finland. The more tail biting reported on the farm, the more problematic the farmers found tail biting, and the more prone they were to say they would probably tail dock if they were allowed to. According to the Finnish producers, the most important factor to prevent tail biting is that there is enough feeding space for the pigs. Altogether, four feeding-related risk factors were included in the top-10 measures to prevent tail biting. Also pig health was considered very important, as well as a good quality of piglets, and controlling air movements in the pen. Straw, newspaper, hay and cardboard were considered the most efficient manipulable materials to prevent tail biting. If tail biting has already started in the pen, the producers ranked identifying and removing the tail biter from the pen as most important, followed by adding bedding-type manipulable materials.

Conclusion: The results are partly in accordance with experimental and epidemiological studies on risk factors for tail biting, but the high focus on feeding-related and health factors is interesting. Finnish farmers appear to handle the tail docking ban well, and do not, on average, find tail biting a very serious problem.

Feeding behaviour and performance in relation to injurious tail biting in boars – a longitudinal study

Feeding behaviour and performance in relation to injurious tail biting in boars – a longitudinal study. By Munsterhjelm, C., J. Nordgreen, M. Heinonen, A. M. Janczak, A. Valros. 2016. Royal Dublin Society: Abstracts book of the 24th International Pig Veterinary Society (IPVS) Congress, Dublin, Republic of Ireland 7-10th June 2016. p. 627.


Introduction: Automatically collected feeder data may be used to predict tail biting in finisher pigs.

Materials and Methods: Pen-level feeding behaviour and growth were investigated in relation to injurious tail biting (ITB), defined as visible wounds, from 10 weeks before to 4 weeks after the first ITB case in the pen. The data set included 36 pens of 10-12 intact boars between 43 and 148 kg, with average pen weight at ITB onset between 78 and 137 kg. A tail biting pen (TBPEN) had at least one case of ITB, whereas a control pen (CTR) had none. Individual feeding-related data including consumed feed, bout length and -frequency were collected by a single automatic ad libitum feeder. Time (week) relative to ITB onset was referred to as RELWEEK. The time before (PRE-ITB, RELWEEK -10 to 0, n=13 TBPEN and 23 CTR pens) and after ITB onset (POST-ITB, RELWEEK 0 to 4, n=9 TBPEN and 21 CTR) were analysed separately. Effects of TBPEN (vs CTR), bodyweight and RELWEEK were analysed using a linear mixed model with RELWEEK as repeated and pen as random effect.

Results: PRE-ITB the number of predicted feeder visits was lower in TBPEN as compared to CTR and decreased with age (PRED = -18 to -39% at RELWEEK -10 to 0; TBPEN effect p=0.02), leading to a tendency for a shorter daily time in the feeder (TBPEN effect p=0.06). TBPEN showed a growth dip to a -11% PRED level in RELWEEK -9 (TBPEN x RELWEEK p=0.001). Feeding behaviour changed in TBPEN in RELWEEK -2 to 0. Significant TBPEN x RELWEEK –interactions (p≤0.02) indicated that the relative decrease in the number of feeding bouts accelerated. Together with a progressive shortening of the average feeding bout this led to decreasing relative feed intake and growth (PRED= -10%, -7% and -8% at RELWEEK 0, respectively). POST-ITB TBPEN still spent less time in the feeder than CTR (TBPEN p=0.04), whereas the difference in the number of visits was decreasing (TBPEN x RELWEEK p<0.001). There was a tendency for a higher intake per second (TBPEN p=0.08) and a significantly faster RELWEEK-related increase in intake per visit (TBPEN x RELWEEK p<0.05), as well as increasingly faster growth (PRED= +9% at RELWEEK 4, TBPEN p=0.02) in TBPEN as compared to CTR. The amount of feed consumed did not differ.

Conclusion: Changes in feeding behaviour in TBPEN 10 weeks before ITB suggests presence of some tail-biting related factor. A growth dip 9 weeks before ITB may indicate the involvement of health problems in tail biting. Rapid changes in feeding behaviour suggest that tail biting behaviour begins or escalates 2 weeks before the first tail wounds are detected. TBPEN shows compensatory growth unrelated to feed intake in the month after ITB onset.

Poster Munsterhjelm IPVS

Effects of clinical lameness and tail biting lesions on voluntary feed intake in growing pigs

Effects of clinical lameness and tail biting lesions on voluntary feed intake in growing pigs
Camilla Munsterhjelm, Mari Heinonen and Anna Valros, 2015. Livestock Science, 181: 210–219.


• We modelled voluntary feed intake in clinically lame or tail bitten pigs.
• Age, sex, diagnosis, initial weight and eventual recovery affects feed intake.
• Feed intake starts decreasing 2–3 weeks before diagnosis.
• Feed intake decreases 10–99% from control levels in sick pigs.
• Anorexia is prolonged in lame animals not recovering to slaughter condition.


A decreased feed intake is considered one of the first signs of disease in farm animals. Feeding-related individual data collected by electronic feeding systems may thus be useful in detecting illness at an early stage. The aim of this study was to determine changes in individual-level voluntary feed intake in growing pigs before and after a bout of sickness modelled by clinical lameness or an acute tail (biting) lesion, which together count for a significant part of overall health problems in intensive pig production. The data consisted of individual records of health and day-level feed intake in fattening pigs between about 40 and 120 kg obtained from the Finnish progeny test farm. Feed was available ad libitum from automatic single-space feeders. Two time periods in relation to diagnosis (day 0), day −50 to 0 (pre-) and day 0 to +50 (post-), were modelled separately for both diagnoses using hierarchical linear models with random and repeated effects. All healthy animals in the affected animals’ pens were used as controls. The number of pigs in the different analyses were 243/551 (cases/controls, pre-tail lesion), 205/693 (post-tail lesion), 116/588 (pre-lameness) and 165/892 (post-lameness).
Feed intake in the study animals was affected by sex, weight at arrival to the farm, health status (lame or tail bitten case vs healthy control), eventual recovery (culled or dead vs recovering to slaughter condition), the day relative to diagnosis and approximate age (the day on the farm), with the four latter factors involved in multiple interactions. Feed intake started decreasing already 2–3 weeks pre-diagnosis in future lame or tail bitten animals, suggesting a common predisposing factor such as reactive coping. Feed intake decreased substantially (13–99%) from control levels in sick animals, with the level dependent on diagnosis, degree of eventual recovery and age. Lame animals ingested two to three times less than tail bitten ones at diagnosis. Within both diagnoses, culled-to-be animals ingested roughly half the relative amount of those recovering to slaughter condition, suggesting that relative feed intake at diagnosis may predict the outcome of disease. Younger animals were generally more severely affected than older ones. Anorexia was prolonged up to about 30 days in culled-to-be lame animals in contrast to all other groups modeled, which started recovery immediately upon diagnosis and initiated treatment. The observed changes and differences in feed intake may indicate differences in animal welfare.

Re­search: How do Finnish pro­du­cers deal with long-tailed pigs?

Tail biting is a common and serious welfare problem in pig production, causing large economical losses. Tail docking is performed routinely in most EU countries to reduce the tail biting risk. However, tail docking is painful, and does not prevent tail biting totally. In Finland, tail docking is forbidden. New research shows that most Finnish producers would not raise tail docked pigs if it were possible.

Professor Anna Valros led a project asking with a web-survey from the Finnish farmers how they manage to raise pigs without tail docking. Respondents scored feeding-related issues to be most important for prevention of tail biting, identifying and removing the biting pig as most important intervention measures, and straw as the most important manipulable material when preventing tail biting. Tail biting was not perceived as a serious problem by over 70% of the respondents, even though docking is not allowed, and was reported to occur close to a level which was also considered acceptable by the respondents. Most respondents did not think it is probable they would raise tail docked pigs if it were possible, but about 21 % probably would.

These results are important for trying to reduce the risk of tail biting, and subsequently the need for tail docking on an international level.

Results are published in Porcine health management – journal.

More in­form­a­tion

professor Anna Valros, anna.valros(at)helsinki.fi

tel. +358-29-4157400

Managing undocked pigs – on-farm prevention of tail biting and attitudes towards tail biting and docking,

Anna Valros, Camilla Munsterhjelm, Laura Hänninen, Tiina Kauppinen, Mari Heinonen, Porcine Health Management 2016