Tag Archives: Sweden

Tail posture as an indicator of tail biting in undocked pigs

Tail posture as an indicator of tail biting in undocked finishing pigs

By Torun Wallgren, Anne Larsen and Stefan Gunnarsson, 2019. Animals 210: 26-37. Special Issue Environmental Enrichment of Pigs.

Simple Summary

Tail biting is a large welfare problem in modern pig production, causing pain and reduced health and production. The identification of tail biting is important for minimising the risk of the escalation of the behaviour and its consequences. Tail posture (i.e., tail hanging or curled) has been suggested to depend on the presence of tail wounds and, therefore, has been suggested as an indicator of tail biting. This study investigated the relationship between tail position and tail damages at feeding, since that could be a feasible time for producers to detect tail posture. The experiment showed that 94% of the pigs had curly tails and that pigs with wounds were more likely to have hanging tails than pigs with nondamaged tails. By observing the tail position at feeding, we were able to identify pigs with tail wounds in 68% of cases simply by scoring pigs with hanging tails. To conclude, the scoring of pigs with hanging tails at feeding was found to be a useful tool for identifying tail damages, which may otherwise be difficult to detect by the caretaker.

Abstract

Tail posture (i.e., hanging or curled) has been suggested to be an indicator of tail biting, and hanging tails predisposed to damage. The aim of this study was to investigate if tail posture was feasible as a tail damage indicator in a commercial setting. The study was carried out on one batch of 459 undocked finishing pigs (30–120 kg in weight). Weekly scoring of tail posture was combined with the scoring of tail lesions. Tail posture was observed at feeding to facilitate the usage of the method in commercial settings. A curly tail was observed in 94% of the observations. Pigs with tails scored with “wound” were 4.15 (p < 0.0001) times more likely to have hanging tails, and pigs scored with “inflamed wounds” were 14.24 (p < 0.0001) times more likely to have hanging tails, compared to pigs with nondamaged tails. Tail posture correctly classified tails with “wound” or “inflamed wound” 67.5% of the time, with 55.2% sensitivity and 79.7% specificity, respectively. The method of observing the tail position at feeding seems useful as a complement to normal inspection for detecting tail biting before tail wounds are visible to the caretaker.

Effect of straw on behaviour, lesions and pen hygiene in undocked pigs

Implication and impact of straw provision on behaviour, lesions and pen hygiene on commercial farms rearing undocked pigs. By Torun Wallgren, Anne Larsen, Nils Lundeheim, Rebecka Westin, Stefan Gunnarsson, 2018. Appl. Anim. Behav. Sci. In press.

Highlights

Pigs that received more straw had more straw directed behaviour.•

Pigs that received more straw showed less pen directed behaviour.•

Increased straw ration decreased the amount of damaged tails in finishing pigs.•

Increased straw provision did not affect pen hygiene.

Abstract

According to the European Union Council Directive 2008/120EC, measures to minimise the risk for tail biting shall be taken before practicing tail docking, e.g. provision of manipulable material. Still,>90% of the pigs within EU are tail docked. Thus, management routines for providing manipulable material in commercial pig production are needed. The aim of this study was to investigate how an increase from normal straw ration influence pig behaviour, occurrence of tail- and ear lesions and impact on pen hygiene.
The experiment was conducted on five Swedish commercial farms; one grower and four farrow-to-finish farms. One batch per farm was studied, following pigs throughout the grower or finishing pig period. Both age groups were examined in two of the farrow-to-finish farms and only finishers in the other two, studying three grower and four finisher batches in total. The pens in a batch were divided into Control (C) and Extra Straw (ES). Pens in C were provided with the farm normal daily straw ratio, while pigs in ES got a doubled C-ration. The pigs in eight focus pens per Treatment were scored for lesions on ears and tails every two weeks. In connection with lesion scoring, behaviour observation was conducted in active pigs during one hour (4 min scan sampling) in the focus pens. All pigs in the batch were examined for tail- and ear lesions during the first and last week of the experiment.
Both growers and finishers spent most of their active time manipulating straw. ES-pigs showed more straw-directed and less pen-directed behaviour in both age groups compared to C-pigs. Behaviour was also affected by farm and age revealing that the impact of an increased straw ration differed between farms and pig age. The increased straw ration did not affect the pen cleanliness, showing that it was practically feasible to increase the straw rations on all participating farms.
The prevalence of tail damages increased with age, and more severe damages was found in C compared to ES. Severe tail and ear lesions were found in ~0.6 and 0.07% of the growers and ~2.2 and 0.75% of the finishers, C- and ES pigs respectively. Approximately 50% of the finishing pigs had tail damages at the end of the study, but the majority of lesions were less than 5 mm long and might not have been detected without close clinical examination.

Can enrichment help reduce tail docking?

In several episodes, leading welfare researchers explain the results they obtained within the international framework ‘FareWellDock’. This project investigates how to steer away from tail docking. Swedish and Danish researchers took a look at straw – does its use reduce the occurrence of tail biting?

Read more in Pig Progress.

From the article:
Tail docking is completely banned in Sweden, Finland and Switzerland.

Science suggests that lack of proper manipulable material is one of several major risk factors for tail biting.

A moderate amount of straw (150 g/pig/day) reduced the risk of injurious tail biting by more than two-fold, while docking seemed to be more effective as it reduced the risk by more than four-fold.

A combination of straw and increased space (1.2 m2 per pig) reduced the risk (of first occurrence) in undocked pigs to the same level as found in docked pigs kept under high stocking density (0.72 m2 per pig) without straw.

To provide a suitable outlet for exploratory behaviour under production conditions, materials have to be varied and complex, and are most effective when easily destroyed by chewing, or if they are edible.

Increasing the amount of straw from 10 to up to 400g/pig/day had multiple positive effects by progressively reducing the occurrence of tail injuries and stomach ulcers, increasing growth rate, increasing straw-directed behaviour, and reducing redirected behaviours towards other pigs.

Left-over straw may be a promising candidate method to screen for appropriate level of straw allocation.

Is it possible to get rid of tail docking

Is it possible to get rid of tail docking? By Vincent ter Beek 2017. Article in PigProgress about FareWellDock.

Tail docking is a well-known practice in pig production, but it is also heavily criticised. An international team of researchers dived into the topic and wondered what its exact effects are on pigs – and what alternatives there are to avoid tail biting….

Read more @ PigProgress.

Note: This article is an approved summary of the Executive Summary which was published earlier this year at http://farewelldock.eu. In future issues of Pig Progress, to be published later this year, several participating researchers in this project will delve deeper into the individual topics they encountered.

FareWellDock Executive Summary

Tail biting constitutes a major welfare and health issue in commercial pig rearing, with significant negative economic consequences. Contrary to the aim of the EU directive (2001/93/EC), tail docking is still widely practiced in most EU countries as a measure to reduce the incidence of tail biting and concomitant pathologies. Mutilations are a general welfare concern in all species, and any efforts towards reducing the need for tail docking are important for the future sustainability of the EU pig sector. Sound policy making needs science-based risk assessment, including assessment of the severity of problems and effectiveness of solutions. The general objectives of the FareWellDock-project included estimation of the relative harms associated with tail docking and tail biting, and evaluation of the efficacy of some main preventive measures against tail biting, which could reduce the need for tail docking. The ultimate aim was to stimulate the development towards a non-docking policy in the EU.

The first objective of WP1 was to evaluate measures of acute and chronic pain in relation to tail damage. This included assessment of the short (acute trauma), medium (post trauma inflammation) and long term (traumatic neuroma formation) pain associated with tail docking in neonatal piglets, and the possible consequences for longer term fear of humans. In addition, the studies assessed the effects of tail-damage in more mature pigs to provide a basis for assessing the pain associated with being tail bitten in later life. Finally, studies were conducted to assess the effects of an NSAID analgesic on the short term responses to neonatal tail docking.

Experimental studies confirmed that piglets do experience pain when tail docked, and that pain relief treatment, such as meloxicam, can lessen but not abolish the physiological stress reaction to docking. Piglets which have been tail docked seem more fearful of people afterwards than undocked animals.  In docked tails, no difference in pain sensitivity of the tail (as measured by behavioural withdrawal) is detected after 8 weeks, but changes in the functioning of the sensory nerves from the tail can still be measured after 4 months, which suggests that the possibility for longer term pain exists. When the tail is damaged later in life, as happens with tail biting, changes in both tail stump sensitivity and nerve functioning can last for at least 4 months, and possibly beyond.

WP2 focused on the role of manipulable material when reducing the need for tail docking. The aim was to develop and validate ways to assess if on-farm use of manipulable material is sufficient to reduce tail biting. Further, the aim was to describe suitable methods for implementing the use of straw under commercial farming conditions and to investigate, in on-farm conditions, the efficiency of tail docking vs. enrichment given in sufficient quantity to reduce the occurrence of tail lesions.

A screening method to assess the appropriateness of the level of enrichment on-farm was developed and includes scoring of the amount of unsoiled straw, the behaviour, and ear, tail and flank lesions of the pigs. AMI (animal-material interaction) sensors were used e.g. to show that pigs in biter pens were more interested in novel ropes than pigs in control pens, that environmental enrichment may reduce exploratory behaviour of point-source objects, and that sick pigs, experimentally infected with streptococcus spp, were less interested in chain manipulation. The sensors appear to be a promising tool to assess the use of manipulable material by pigs. In countries (SE and FI) where tail docking is not done, farmers report using on average of 30 to 50 g of straw/pig/ day, equivalent to about 0.5 L/pig/day. A survey in SE revealed fewer injurious tail biting outbreaks on farms using larger amounts of straw. Larger amounts of straw were mainly used on farms having scrapers in the slurry channels. A large experimental study showed that a moderate amount of straw (150 gr/pig/day) reduced injurious tail-biting outbreak in finisher pigs by more than 50%, while docking seemed to be more effective as it reduced tail biting by more than four-fold. The effect of both measures was additive, i.e. docking and straw reduced tail biting 9 fold. Further, it was shown that increasing the amount of straw from 10 to up to 400 gr/pig/day had multiple positive effects by progressively reducing the occurrence of tail injuries and stomach ulcers, increasing growth rate, increasing straw-directed behaviour, and reducing redirected behaviours towards other pigs.

In WP3 the aim was to clarify the role of poor health in the causation of tail biting and victimization, and the aim was study early identification of tail-biting outbreaks. In addition, the aim to develop automated systems for early warning of tail biting outbreaks.

The results of experimental and on-farm studies showed that the social behaviour of sick pigs differs from healthy pen mates, as pigs with osteochondrosis received more sniffing and tail bites from their pen mates than healthy pigs, while pigs with mild respiratory disease tended to bite more at the ears and tails of pen mates than healthy pigs did. In addition, studies of cytokines suggest that low-grade inflammation may decrease activity and increase receiving sniffs and attacks from other pigs. Studies on data sets from commercial pig farms indicated that changes in feeding behaviour may be an important sign of an increased risk for tail biting to occur: Future tail bitten individuals showed a reduced feed intake already 2-3 weeks before tail damage became evident. Furthermore, feeding behaviour in groups which develop tail biting may differ from non-biting groups for at least ten weeks prior to  an injurious tail-biting outbreak. It was also shown that tail-chewing activity may start 2-3 weeks before tail damage can be seen. A detailed behavioural study of tail biting events revealed that there appears to be no such thing as a ‘typical’ tail-biting event and that the behaviour shown immediately before a tail-biting event does not differ from behaviour prior to another type of social interaction, namely ano-genital sniffing. Thus, it seems difficult to predict if a social event will escalate into tail biting or not. However, tail biting is more likely between pigs that have previously interacted. Data sets from several countries and studies indicated an association between tail-biting damage and tear staining, but the direction of this association is not clear.

In summary the project concluded on a set of practical recommendations, which have been published as part of four factsheets on the FareWellDock-webpage:

  • Avoid tail docking whenever possible because it definitely causes pain, induces long-term changes in sensory-nerve function and may impair the pigs’ confidence in humans.
  • Avoid tail biting, and hence the need for tail docking, by addressing risk factors on the farm.
  • Treat tail-bitten pigs promptly and consider pain relief.
  • To reduce injurious tail-biting outbreaks, use straw as it might be almost as effective as tail docking. For this purpose, the more straw the better.
  • To ensure that sufficient straw is allocated check that there is left-over straw before the next day’s allocation.
  • Keep your pigs healthy. This will be good both for productivity and also help avoid injurious tail-biting outbreaks.
  • If pigs show signs of illness, be more alert to tail biting risk.
  • Remove tail-bitten pigs promptly to avoid further damage and treat according to veterinary advice.
  • Pay special attention to groups of pigs where you see:
    • high or suddenly increased levels of general activity or exploration
    • tail manipulation or chewing
    • swinging or tucked tails
    • low or decreasing numbers of visits to an automatic feeder or reduced feed intake

 

Information on project activities and publications have been continuously published on the FareWellDock-webpage. To date, 16 scientific articles have been published, and 9 are in preparation. Communication to stakeholders has been active, both through the FareWellDock-webpage, including 97 blog posts, and by interviews in media in different countries, popular articles and presentations at producer seminars. In October 2016 the results were presented widely at the EU level to policy makers and other stakeholders at the ‘Meeting and Webinar on Actions to Prevent Tail biting and Reduce Tail docking of Pigs’, organized by the European Commission Directorate General for Health and Food Safety in Grange, Ireland.

Due to the positive experience of the cooperation a decision was made at the last project meeting in DK in October 2016 that we will continue our cooperation as the FareWellDock-network, also inviting further researchers and stakeholders to join. The first activity of the FWD-network will be to organise a satellite meeting at the Congress of the International Society for Applied Ethology in August 2017 in DK, and to launch an emailing list to make sure FWD-network members and other researchers keep updated on research progress and related topics.

FareWellDock logo

Factsheets FareWellDock project

The FareWellDock factsheets are out. Below you find the cover factsheet as well as the factsheets on tail docking, enrichment, health and the prediction of tail biting. This post shows images of the English versions, and  links to the pdf version of the English factsheets, as well as all factsheets in Danish, Dutch, Finnish, French, Italian, Norwegian and Swedish. Separate pages are available directly showing the factsheets in the other languages (Danish, Dutch, Finnish, French, Italian, Norwegian and Swedish).

Cover factsheet

Cover factsheet in English

Factsheet cover English (pdf)
Factsheet cover Danish (pdf)
Factsheet cover Dutch (pdf)
Factsheet cover Finnish (pdf)
Factsheet cover French (pdf)
Factsheet cover Italian (pdf)
Factsheet cover Norwegian (pdf)
Factsheet cover Swedish (pdf)

Tail docking

Factsheet 1 Tail docking English
Factsheet 1 Tail docking English (pdf)
Factsheet 1 Danish (pdf)
Factsheet 1 Dutch (pdf)
Factsheet 1 Finnish (pdf)
Factsheet 1 French (pdf)
Factsheet 1 Italian (pdf)
Factsheet 1 Norwegian
Factsheet 1 Swedish (pdf)

Enrichment

Factsheet 2 Enrichment English
Factsheet 2 Enrichment English (pdf)
Factsheet 2 Danish (pdf)
Factsheet 2 Dutch (pdf)
Factsheet 2 Finnish (pdf)
Factsheet 2 French (pdf)
Factsheet 2 Italian (pdf)
Factsheet 2 Norwegian (pdf)
Factsheet 2 Swedish (pdf)

Health

Factsheet 3 Health English
Factsheet 3 Health English (pdf)
Factsheet 3 Danish (pdf)
Factsheet 3 Dutch (pdf)
Factsheet 3 Finnish (pdf)
Factsheet 3 French (pdf)
Factsheet 3 Italian (pdf)
Factsheet 3 Norwegian (pdf)
Factsheet 3 Swedish (pdf)

Prediction of tail biting

Factsheet 4 Prediction English

Factsheet 4 Prediction English (pdf)
Factsheet 4 Danish (pdf)
Factsheet 4 Dutch (pdf)
Factsheet 4 Finnish (pdf)
Factsheet 4 French (pdf)
Factsheet 4 Italian (pdf)
Factsheet 4 Norwegian (pdf)
Factsheet 4 Swedish (pdf)

Survey on straw use and tail biting on Swedish pig farms

Wallgren, T. R. Westin and S. Gunnarsson, 2016.  A survey of straw use and tail biting in Swedish pig farms rearing undocked pigs. Acta Veterinaria Scandinavica 58:84.

Abstract

Background: Tail biting is a common problem in intensive pig farming, affecting both welfare and production. Although routine tail docking is banned within the EU, it remains a common practice to prevent tail biting. Straw as environmental enrichment has been proposed as an alternative to tail docking, but its effectiveness against tail biting and function in manure handling systems have to be considered. The aim of the study was to survey how pigs with intact tails are raised and how tail biting is handled in Sweden, where tail docking is banned through national legislation. The study emphasises straw usage and its association with tail biting pigs and problems in the manure handling system. The expectation is that this information could be conveyed to the rest of the EU to reduce the need for tail docking.

Results: In a telephone survey of randomly selected Swedish pig farmers (46 nursery and 43 finishing pig units) with at least 50 sows or 300 finishing places, it was found that straw was used by 98% of the farmers. The median daily straw ration provided was 29 g/pig for nursery and 50 g/pig for finishing pigs in systems with partly slatted flooring. The reported prevalence of tail biting was 1.6% at slaughter. The majority of farmers reported that they never had manure handling problems caused by straw (56% of nursery units and 81% of finishing pig units). A proportion of farmers (37%) also provided with additional material apart from straw on some occasions, which may have affected tail biting prevalence and manure handling problems.

Conclusions: Swedish farmers rear undocked pigs without large problems with tail biting. Straw is the main manipulable material used, and additional manipulable material is used to various extents. The low incidence of straw obstructing the manure handling systems implies that it is indeed possible to use straw in partly slatted flooring systems, reducing the need for tail docking. The impact of using additional manipulable material is unknown and requires more investigation to separate the impact of such material from the impact of straw.

Straw survey in Sweden (3 conference abstracts)

A survey of straw use and tail biting in Swedish undocked pig farms
ICPD 2016, 20-23 June 2016, Wageningen (oral presentation)
T. Wallgren, R. Westin, S. Gunnarsson
Swedish University of Agricultural Sciences, Department of Animal Environment and Health, Skara, Sweden

Abstract

Tail biting is a common problem in todays’ pig production, affecting production and welfare. As tail biting behaviour is more prominent in systems with no or limited access manipulable material, it has been considered related to exploratory behaviours. Tail docking, commonly used as tail biting prevention, is a painful procedure that can decrease pig welfare does not eliminate the tail biting behaviour. Although tail docking is not accepted as a routine procedure according to the EU Directive 2008/120/EC it is still a common practise within the EU, which is why other measures to reduce tail biting behaviour are needed. In Sweden, tail docking is banned and tail biting must be reduced otherwise. Furthermore, Swedish legislation banned fully slatted floors and demands pigs to have access to manipulable material. In order to investigate the prevalence of tail biting in Sweden and the relationship with provision of straw, we performed a telephone survey in nursery (n=46) and finishing pig (n=43) farms. Farmers were interviewed regarding straw usage (e.g. daily ratios) and tail biting (e.g. frequency). All participating farmers gave access to manipulable material and 98% used straw. The median straw ration reported by farmers was 29g/pig/day (min: 8g, max: 85g) in nursery and 50g/pig/day (9g, 225g) in finishing farms when excluding deep litter systems. Farmers reported having observed tail bitten pigs, at any time, in 50% of nursery and 88% of finishing pig farms. Of these, tail bitten pigs were reported to be found ≤2 times/year (78%), 3-6 times/year(17%) or monthly (4%) in nursery and ≤2 times/year (21%), 3-6 times/year (37%), monthly (34%) or weekly (8%) in finishing farms. Finishing farmers reported on average 1.6% tail bitten pigs/batch (0.1-6.5%), which is in line with abattoir data. Spearman rank correlation was used for statistical analysis. Increased straw ration was correlated with decreased reported tail biting frequency in finishing farms (r=-0.39, P=0.03, n=31), and a tendency for this was found in nursery farms (r=-0.33, P=0.08, n=29) when deep litter systems were included. In finishing farms, excluding deep litter systems, an increased tail biting frequency observed by farmers was correlated to the percentage of tail bitten pigs (r=0.64, P=<0.001, n=33), indicating that an increased frequency of tail biting reported may be associated with more pens affected at outbreaks. Even though provided straw rations were quite small (i.e. 30-50 g/pig/day), this amount of straw may provide pigs with enough occupation to limit tail biting outbreaks. We conclude that tail biting can be kept at a low level (ca 2%) in partly slatted flooring systems, without tail docking, by supplying straw.

Raising undocked pigs: straw, tail biting and management
ISAE 201612-15 July 2016 (poster presentation, see below)
Torun Wallgren, Rebecka Westin and Stefan Gunnarsson
Swedish University of Agricultural Sciences, Department of Animal Environment and Health, Skara, Sweden

Abstract

Tail biting in pigs is common in pig production and has been suggested correlated to several behaviours. It is associated with reduced welfare and production losses. A common practice to reduce tail biting within EU is tail docking where part of the tail is removed; a painful procedure that does not eliminate the behaviour. According to the EU Directive 2008/120/EC routine tail docking is banned and other measures to reduce tail biting must replace docking. An alternative is to improve the pig environment by using straw and thus decrease development of tail biting. Straw usage has been difficult to implement since it is argued that straw provision is incompatible with fully slatted floors. In Sweden, tail docking and fully slatted floors are completely banned through national legislation. Furthermore, it is a legal requirement that pigs should have access to manipulable material. The implementation of straw usage in Swedish farms was investigated in a telephone survey to study straw usage and farmers’ opinion on straw impact on tail biting and farm management. A total of 46 nursery and 43 finishing farmers were interviewed, all reporting providing pigs with enrichment material, most commonly straw (98%). Median straw rations provided in systems with partly slatted floor was 29 g/pig/day (8-85 g) in nursery and 50 g (9-225 g) in finishing farms. Straw was the only manipulable material in 50% of nursery and 65% of finishing farms while remaining farms used additional material, most commonly wood shavings (65%). ‘Toys’, e.g. balls and ropes, were used by 13% of nursery and 16% of finishing farmers as a supplement to other manipulable material. Of these, 62% only provided these ‘toys’ occasionally, e.g. at re-grouping or when tail biting had been observed. Problems in the manure handling systems caused by straw had occurred in 32% of the farms, of these 25% had problems at yearly and 7% monthly, or more seldom (58%). Tail biting had been observed in the production at least once by 50% of nursery and 88% of finishing farmers, an average of 1.6% finishing pigs were reported tail bitten per batch (0.1-6.5). Tail biting was observed ≤twice/year (78%) 3-6 times/yr (17%) and monthly (4%) by nursey and ≤2 times/yr (21%), 3-6 times/yr (37%), monthly (34%) and weekly (8%) by finishing farmers. The provided amounts of straw seem to be sufficient to keep tail biting at a low level in undocked pig herds (<2%/batch). The low incidence of straw obstruction in manure handling systems reported also implies that straw usage at this rate 30-50 g/pig/day) is manageable in pig production systems.

Production of undocked pigs, a survey of farmers’ experiences
EAAP Annual Meeting, 29 August – 2 September 2016, Belfast (oral presentation)
T. Wallgren, R. Westin, S. Gunnarsson
Swedish University of Agricultural Sciences, Department of Animal Environment and Health, Skara, Sweden

Abstract

Tail biting is a common cause for reduced welfare and production rates within commercial pig production and is more prominent in barren environments. Using enrichment as straw has been shown to reduce tail biting behavior and thus reduce need for tail docking. Implementation of straw in practice has however partly default since it is argued that straw will cause obstruction in the manure handling systems. Sweden has a long tradition of rearing undocked pigs with access to straw due to national legislation banning docking and fully slatted floors while demanding access to manipulable material for pigs. We surveyed 60 randomly selected Swedish nursery and finishing pig farmers’ usage of straw and their opinions on straw impact on tail biting and manure handling management. All farmers provided manipulable material, 98% straw. In 50% of nursery and 35% of finishing farms the straw was complemented with material such as wood shavings. Straw rations were 29g/pig/day (8-85g) in nursery and 50g (9-225g) in finishing farms. Straw was commonly chopped (76%) to a mean length of 6 cm (1-10) in nursery and 8 cm (1-20) in finishing farms. Straw causing problems in the manure handling system occurred in 32% of the farms who experienced this yearly (25%) or monthly (7%). Most common causes were straw making the slurry sluggish, stacked in pivot or blocking slats. The low incidences of problems indicate current systems are able to cope with presented straw rations. Tail biting had been seen at least one time ever in 50% of nursery and 88% of finishing farms. Frequency of observed tail biting was ≤twice/year (78%) 3-6 times/yr (17%) and monthly (4%) by nursey and ≤ 2 times/yr (21%), 3-6 times/yr (37%), monthly (34%) and weekly (8%) by finishing farmers. An average of 1.6 (0.1-6.5) finishing pigs were reported tail bitten each batch. In partly slatted flooring systems a correlation was found between increased tail biting frequency and percentage of reported tail bitten pigs (r=0.64, P= <0.0001, n=38) (Spearman Rank correlation). The limited tail biting problems indicate that straw usage at this level is enough to prevent major tail biting outbreaks in undocked pigs.

Poster straw survey Sweden

Tail docking in the EU: A case of routine violation of an EU Directive

Tail docking in the EU: A case of routine violation of an EU Directive
By Lerner, H and B. Algers. 2013. In book: The ethics of consumption, pp.374-378. Wageningen Academic Publishers. The Netherlands.

Abstract

The question of tail docking in pigs is an ongoing problem despite the fact that it should have been solved long ago. In the Council Directive 2008/120/EC it is clearly stated that routine tail docking in pigs are prohibited and enrichment materials for the pigs must be provided, which is in line with the high animal welfare standards that the European Union aim for. This directive is in force in all member states. The habit of tail docking is widespread as a simple comparison by two reports by EFSA shows. We present these results together with results showing that some countries, like Sweden, Finland and Lithuania manage to still keep their production without tail docking routinely. We therefore suggest that the gap between the strong intentions of prohibiting tail docking in the directive and the weak (or non-existent) enforcement of it in most countries in the EU needs to be closed. Of the arguments saying that this will be a troublesome task, we will here focus on two of them. The first is that the directive is unclear or actually allows tail docking. The second is that the habit of routine tail docking is economically profitable. Both these arguments will not hold. There are three ways to bridge the gap. The first is to lower the threshold, lowering the animal welfare level in the directive. We believe strongly that this solution is contradictory to the trend in today’s legislation about animals and not in line with the Lisbon treaty. The second is to demand stronger enforcement which is in line with the EU Strategy for the Protection and Welfare of Animals 2012-2015. The third is to accept that different countries will not enforce the directive, then leaving it to the consumer to choose between more or less animal friendly pork. EU seems to adopt this way in contrast to the EU AW Strategy. To properly inform consumers about animal welfare is a good help although it demands a lot of resources and is a rather slow process. Therefore, in order to have a rapid solution to the gap one need to have a stronger enforcement of the law.

Soundbites Pig Welfare Conference: 4. Posters

On 29 – 30 April 2015 Denmark hosted an international conference “Improving Pig Welfare – what are the ways forward?“.

Below you find ‘soundbites’ from posters presented at the the conference, all more or less related to the subjects of study in the FareWellDock project.

Do increasing amounts of straw increase growing pigs’ oral manipulation of straw?
Margit Bak Jensen, Mette S. Herskin, Björn Forkman, Lene J. Pedersen
Pigs were provided with various amounts of unchopped straw (10-500 gr/pig/day) to determine the amount of straw where additional provision did not further increase pigs’ exploratory behaviour.
Increasing the straw amount from 10 to 360 g straw per pig per day increased the time pigs spent in oral manipulation of straw markedly, while increasing the straw amount above 430 g straw per pig per day had no additional effect .
Approximately 400 g long straw per pig per day maximizes straw‐directed behaviour in partly slatted concrete floor (0.7 m2/pig)

Providing various amounts of straw (10-500 gr/pig/day) showed that oral manipulation of straw increases steadily up to 360 g straw/p/d. (M. Bak-Jensen et al.)

Increasing amounts of straw increase growing pigs’ production and healthLene J. Pedersen, Mette S. Herskin, Björn Forkman, Henrik Elvang Jensen, Margit B. Jensen
Aim: To quantify the amount of straw needed to achieve health and production effects, we investigated the effect of straw amount on the prevalence of gastric ulcers and production parameters.
Animals & housing: In both experiments pigs were housed in groups of 18 per pen, with partly slatted concrete floor (0.7 m2/pig) and fed a commercial dry feed for ad libitum intake.
Conclusion: The average daily gain (ADG) increased by 8±17 g/day for every extra 100 g straw added daily (P<0.001) resulting in 42 g higher ADG at 500 compared to 10 g straw provided. The feed conversion ratio was not affected by amounts of straw. The proportion of pigs with ulcerations was reduced by permanent access to straw (7 vs. 33%; P<0.05). Based on these results, production and health parameters were improved by increasing amounts of straw to pigs kept in conventional pens.

More straw improves production (ADG) and health (ulceration) parameters of pigs significantly (L.J. Pedersen et al.)

Tail biters may have a relatively high innate immune status (Ursinus et al.)

Straw provided to growing/finishing pigs resulted in a lower prevalence of tail lesions at slaughter (Dippel et al.)
The SchwIP management tool for tail biting in fattening pigs: a comprehensive approach for a complex problem (Dippel et al.)
Farm specific reports with causal explanations facilitate farmer engagement and knowledge transfer (Dippel et al.)

Tail lesions on carcasses of Irish slaughter pigs in relation to producer association with advisory services
N. van Staaveren, D. L. Teixeira, A. Hanlon and L. A. Boyle
The high prevalence of moderate tail lesions in a large proportion of batches of slaughter pigs suggests that chronic tail manipulation is a widespread problem. The large variation between batches indicates that there is good scope for improvement in the housing and management of pigs to reduce this behaviour on Irish farms. Given the economic and welfare implications of even moderate tail lesions it would benefit producers to receive information from the factory on such lesions recorded during meat inspection. This could help inform farm management plans and enable intervention before the behaviour escalates into tail biting.
The high prevalence of moderate tail lesions in a large proportion of batches of IE slaughter pigs suggests that chronic tail manipulation is a widespread problem (Van Staaveren et al.).
The large variation in tail biting between batches indicates that there is good scope for improvement in the housing and management of pigs to reduce this behaviour.
It would benefit pig producers to receive information about tail lesions recorded during meat inspection. This could help inform farm management and enable intervention before the behaviour escalates into tail biting (Van Staaveren et al.).

Experiences with Intact Tails in Well-Managed Conventional Herds
H.P. Lahrmann, T. Jensen, E. Damsted
Even in well-managed herds in average one out of two pigs is at risk of getting a tail lesion between 7-85 kg (Lahrmann et al., pilot study in DK).

Straw Use and Prevention of Tail Biting in Undocked Pigs – a Survey of Housing and Management Routines in Swedish Pig Farms
Stefan Gunnarsson, Beth Young and Rebecka Westin
The Swedish farmers reported limited problems with tail biting in finishing pigs. In nurseries tail biting was rarely observed.
Straw was provided to the pigs more or less daily.
Distribution of straw caused no problems with the manure system in 58% of the nurseries and in 81% of the finishing units (Gunnarsson et al.).

The Effect of an Enriched Environment on Biting Behavior and Performance of Finishing Pigs with Intact Tails
A. Bulens, S. Van Beirendonck, J. Van Thielen, N. Buys, B. Driessen
Pigs performed better in pens enriched with hanging toy, straw blocks and hiding wall: pigs had higher body weight at 90 kg and at 120kg, and showed less frustration and less tail manipulation. (Bulens et al.)

Curly Tails: the Dutch Approach
Marion Kluivers, Carola van der Peet, Anita Hoofs, Nienke Dirx, Nanda Ursinus, Liesbeth Bolhuis, Geert van der Peet
Dutch Curly Tails project aims at closing the gap between science and practice, and relieving the anxiety and scepticism about keeping pigs with long tails in current systems.
During the first year researchers and animal caretakers developed a mutual understanding that enabled putting scientific knowledge into practice (Kluivers et al.)
Costs and labour of keeping pigs with intact tails should not be underestimated (Kluivers et al.)
Biting behaviour can already start in the farrowing unit (Kluivers et al.)
Coaching, creating trust, transferring knowledge are essential in the process towards keeping pigs with long intact tails (Kluivers et al.)

How to solve a conflict without getting into a fight? Space for conflict resolution should not be regarded as an unnecessary luxury (Camerlink et al.)