Tag Archives: Compliance

Weighing tail biting against tail docking

Weighing tail biting against tail docking

Tail docking is an undesirable mutilation of pigs. Currently virtually all young piglets are docked in conventional farming so as to prevent tail biting later in life. However, throughout Europe efforts are made to reduce tail docking. Often farmers provide additional enrichment to try and prevent tail biting. Nevertheless, stopping the practice of tail docking may, and frequently does, lead to elevated levels of tail biting, resulting in tail wounds. In relation to this farmers and policy makers would like to know what levels of tail biting would be equivalent to tail docking in terms of pig welfare, i.e. how much tail biting can be allowed before deciding it would be better to continue tail docking. But this poses the problem how to weigh the (lack of) welfare involved in tail biting of a grower or finishing pig against the pain of tail docking of young piglets. Is this possible? And if so, how?

Brainstorm

We recently had a brainstorm session on this subject. This is an outline of what we came up with, including a very tentative personal estimate (by MB).

In my personal view when (in the end up to) about 12% of undocked pigs were tail bitten that would be roughly equivalent in welfare to the docking of all piglets. The uncertainty margin, however,  is high, at least ranging from 5-25%. The reasoning underlying my estimate is as follows.

Pain

Firstly, piglets are normally docked using hot iron cautery. This is quite painful as it involves applying both heat and rather blunt trauma. The heat kills bacteria and thus may reduce the chance of subsequent infection of the tail wound. Tail biting at a later age, by contrast, is caused by even more (and multiple) blunt trauma (due to biting). It also has a substantially higher likelihood of infection. In addition, there is e.g. fear in the tail bitten pig due to being chased by a biter. Based on this I would say that pain (and stress directly related to tail biting) may roughly be about ten times as high in intensity and about ten times as long in duration, compared to tail docking. This would imply that 1 tail-bitten pig is off-set by about 100 docked piglets as regards the intensity and duration of the pain involved.

Stress

However, animal welfare encompasses more than just pain. An important additional factor is the level of stress which is not directly related to tail biting activity.

Firstly, there may be stress related to the treatment of tail biting, e.g. when biters and/or victims are taken out of the pen (resulting in social isolation and/or fighting). This stressor, however, is partly offset by the enhanced enrichment normally provided to pigs experiencing an outbreak of tail biting (though not all pigs are equally affected by the ‘costs’ and ‘benefits’). Note that there is another, more macabre, offset involving ‘happiness’ too, and that is the excitement experienced by the (sometimes fanatic) biter pigs when a tail-biting outbreak has started. Note also, that this biter ‘welfare’ is at the same time an indicator of the level of (background) stress experienced by pigs leading to this abnormal behaviour in the first place.

A much more important source of stress that must be taken into account, therefore, is related to the general housing conditions to which the pigs are exposed prior to a tail biting outbreak. Tail biting is an unnatural behaviour that is triggered by (some kind of) stress. Pig farmers are aware of this and will try and prevent tail biting by generally improving the housing conditions when they (start to) raise pigs with intact (undocked) tails. Thus the expected level of stress to which the pigs are exposed is likely to be higher in the case of routine tail docking. When farmers stop tail docking they normally provide much better enrichment (rooting material & space). Farmers raising pigs with intact tails will also take other measures to reduce stress, e.g. provide better climatic conditions, better feed and better health care. These stress-reducing measures don’t just apply to the biters or the victims of tail biting. They apply to all pigs in the pen. Furthermore, they don’t just apply during an outbreak of tail biting, but they apply throughout the pigs’ lives. Hence, the reduced stress levels are a major factor reducing the off-set between docking and tail biting based exclusively on pain (and pain-related fear). I would estimate that the improved living conditions may reduce the off-set by at least a factor 10. This would mean that taking into account both pain and stress, 100(%) docked pigs (kept with minimal care and in a more barren environment) could be roughly equivalent to similarly-sized group of pigs with intact tails under enriched conditions and in which 10% of the pigs has been tail bitten.

Tail biting in docked pigs

However, we know that tail biting does not only occur in undocked pigs. It is also seen in docked pigs. Roughly 2% of docked pigs are tail bitten. It seems safe to assume that the level of pain from being tail bitten is roughly comparable in docked pigs and in undocked pigs (though docked tails may be more sensitive and thus less likely to get bitten). Taking this into account would imply that 100 docked pigs of which 2% also experiences tail biting later in life would be having a level of (poor) welfare comparable to 100 undocked pigs of which 12% gets tail bitten. This is about 6 times as much tail biting as the 2% base-line set under conventional docking conditions.

Much uncertainty

It must be emphasised again, however, that this level of 12% tail biting is a very rough estimate. So, a wide safety-margin applies, e.g. 5-25%. This may depend in particular on the quality of enrichment and the extra care provided under non-docking conditions.

Please note, that this post is the result of a brainstorm session only and presents a personal view. It illustrates how systematic reasoning (using principles of semantic modelling) can be used to start to answer this rather important welfare question. I have provided a very rough estimate. For a more accurate assessment more detailed studies would certainly be required, both in terms of more carefully including what is already known and in terms of accumulating more empirical knowledge about what is not known yet. At present the assessment is still very speculative, and meant to illustrate primarily how to in principle deal with the question of what level of tail biting is equivalent to a practice of routine tail docking.

‘Weighing’ a pig ‘manually’

Postscript: Excluded aspects and some feedback from readers

Note that, in my estimate I neglected several (minor) aspects.

Firstly, I neglected the fact that for tail docking piglets must be picked up. This results in stress, both in the mother sow and in the piglets. From an evolutionary perspective the procedure of catching piglets may be equivalent to experiencing capture by a predator. This would mean that the given estimate would be a moderate underestimation. However, tail docking may be performed in combination with other treatments such as iron injection and castration. If so, the additional stress from handling may be relatively minor. Note, however, that castration applies only to males and may be banned in the near future, and iron injection may be given orally as a kind of ingestible compost, or as has recently been shown, may not be necessary at all. Hence, combining such treatments with tail docking has a reducing likelihood.

Secondly, I assumed that teeth cutting will not be practiced to treat an outbreak of tail biting, neither in the docked pigs, nor in the undocked pigs. Or, more precisely, at least I assumed teeth cutting is not practiced in substantially different numbers of pig. Such teeth cutting is painful and illegal, so it could be considered appropriate to ignore the practice. However, if it were practiced more in undocked pigs (which are likely to experience higher levels of tail biting), then it would have a substantial impact on the level of equivalence, pushing the percentage back down again substantially.

A third point to note is that I did not include in the estimate other ethical considerations or our (anthropomorphic) emotional responses. An example of the latter may be related to the amount of blood seen in the pen, the farmer’s level of stress (unpredictability) associated to this, and the potentially adverse economic consequences associated with tail biting. An example of other ethical considerations is the fact that tail docking may be considered to be an infringement of the animals’ integrity or intrinsic value. In such a rights-based moral view tail docking may be considered ethically wrong, regardless of the level of tail biting when tail docking is stopped. Such aspects were excluded because these are aspects not directly related to animal welfare. They are more related to our human perception of ethics and/or human welfare, rather than animal welfare.

Finally, it is most important to emphasise that I have considered steady-state conditions, but realize that all practices are subject to optimisation. The practice of tail docking has already been optimised for over a period of at least 50 year. By contrast, the practice of raising pigs with intact tails still more or less has to enter the phase of optimisation in commercial practice. This implies that substantially higher levels of tail biting may be regarded as acceptable, provided this is only temporary and provided it leads to substantially lower levels of tail biting later on. In other words, it requires that farmers will persist in raising pigs with intact tails and have a chance to learn to deal with it over a certain transition period, both in terms of prevention and treatment of tail-biting outbreaks.

Feedback reader 1:

Regarding the painfulness of tail biting vs tail docking, I find it impossible to guess the relation – especially as tail biting comes in so many forms.

I absolutely agree that a weighing like this is necessary, but I also think it is a bit dangerous to throw out estimates that are not really based on any evidence (or at least you do not present any?), such as the 100 times worse pain experienced by bitten pigs than docked pigs. Also, tail biting is very heterogeneous, from just a small, one-time bite, to a chronic situation, where the entire tail is lost, so the way you estimate the pain simplifies the matter greatly.

As to the expected level of actual tail biting when docking is stopped: I estimate a two-fold increase in tail biting if no docking is performed. Perhaps somewhere between 2- and 4-fold, based on e.g. slaughterhouse data. There may be a 4-fold increase when the housing situation is not improved otherwise – which you also take into account in your text – when applying a non-docking policy the farmer would normally also improve housing conditions, thus reducing the risk further. I certainly agree that when a farm stops docking, they will probably have a higher incidence of tail biting initially, but on the long-term (as is shown e.g. in Finland where tail docking is totally forbidden, and the tail-biting incidence, based on abattoir data is around 2%), a 10 or 12% incidence is certainly higher than I would expect.

Feedback reader 2:

Having read your blog I think you need to factor in adaptive, compensatory pain modulation into your model.

It is sometimes too easy to fail to take into account post-injury peripheral and central modulation of pain signalling that occur as part of the normal healing process and only focus on the ‘pro-pain’ component.

I also don’t see how you can substantiate this claim?

‘Based on this I would say that the pain of tail biting may be about ten times as high and about ten times as long, compared to tail docking. This would imply that 1 tail-bitten pig is off-set by about 100 docked piglets as regards the intensity and duration of the pain involved’.

While I think it might be possible to attribute weighting to some risk factors within systems, I don’t think it can be applied to pain experienced by an individual (or even at group level as you are suggesting) because there are so many factors that contribute to an individual’s experience of pain? I don’t think you can quantify the painfulness of tail biting and tail docking.

Also when thinking about stress you might want to define what you mean by that in relation to chronicity?

Short-term compensatory responses to stress are in my view positive for the animal; however beyond that when there is a failure of compensation and ultimately homeostatic decompensation then they are undoubtedly negative.

I guess I’m suggesting that any weighting approach might need to accommodate (or factor in) changes over time (i.e. dynamic weighting?)

I hope you find my comments helpful?

Reply:

As to substantiation, again, it’s my suggestion for a start of an argument to answer this in my view fairly important question. My answer is based on my personal experience as a vet and scientist, and on reasons indicated in the blog. It is certainly in need of further study, examination and assessment. I fully acknowledge the considerable level of uncertainty as well as the risk associated with trying to answer the question. At the same time, however, I would also argue that there is a considerable risk in refusing to try to answer the question, as this leaves the issue to stakeholders.

Feedback reader 3:

Joining the discussion rather late, but basically I agree with the points others have made. I think it quite reasonable to conceptually set out the trade-offs which would determine the level of tail biting above which tail docking could be ethically justified, but putting numbers on some of these things is rather difficult.

For risk of tail biting in docked and undocked pigs we have a growing number of published sources and comparative national data.

For experimental comparisons we have old data suggesting increases of 30-60% in pigs in unbedded systems.

More recently we have studies suggesting somewhat lower results if straw is given.

So this part is perhaps simple, but depends on your assumptions about which husbandry systems will pertain across Europe.

For the welfare detriment of tail docking and tail biting, data indicate that both have long lasting effects on pain processing pathways, but the implications of this for pain perception for the individual are uncertain.

For tail docking, the data I have seen are still contradictory on whether cautery is more or less painful than simple section (some suggest the cautery destroys the nerves whilst others suggest greater pain). There is also the possibility of tail docking with anaesthesia/analgesia as a route of adoption.

For tail biting, the short term pain will certainly depend on the severity and, even more, on the prevalence of infection. The data on this are currently lacking to my knowledge.

The welfare impairment of keeping in conditions which give rise to tail biting is clearly the greatest of all in magnitude (severity x duration x no of animals) but I don’t think we have any way of comparing the welfare severity of ‘behavioural frustration’ against that of injury/pain. I would be concerned about taking arbitrary figures in the absence of any logical basis.

So, I guess my suggestion would be to explore the framework for this decision, but be very wary about pretending we can quantify it.

I also think the issue not addressed in your blog is the time course of any transition to cessation of tail docking and how to manage this. What proportion of farmers would have the awareness, capital and staff training to implement the changes necessary to their existing housing if obliged to cease tail docking (some older, fully slatted and large group housing systems will pose much bigger challenges and possibly require replacement of buildings), and how long would it take across Europe to reach the ‘acceptable’ situation of relatively low differential in tail-biting prevalence between docked and intact tails, rather than the ‘unacceptable’ differential shown for “one off” change in tail-docking experiments (stopping docking without further improvement of the environmental conditions). I think it important to highlight that your analysis relates to a ‘steady state’ situation and the importance of how any transition is managed and the welfare implications which this will have.

Reply:

Note that I have not been comparing docking versus non-docking in a mono-factorial way. I compared docking in a more barren environment versus not docking in a more enriched environment supplemented with special attention by the farmer, as that is what will normally happen in practice. I have now emphasised this more clearly in the text.

I largely agree that we currently largely lack the data needed to quantify more precisely. However, I also believe that in principle it is possible to do so, and that the estimate/assessment can be more or less verified empirically (as the body of knowledge accumulates and modelling principles are improved). Personally, I am inclined to try and quantify despite considerable uncertainty, because it provides a better starting point for further discussion. In addition, such preliminary but more science-based estimates are much needed to complement the inevitably politically-loaded figures and personal assessments presented by farmer-representatives and NGO’s arguing either (rather exclusively) against or in favour of ending tail docking as a routine practice to prevent tail biting.

An important point I’ve been trying to make is that pain is not the only relevant aspect of welfare involved in tail docking and tail biting, and that the levels of enrichment and care should also be taken into account. I don’t think it is even possible to honestly say it is not possible to ‘add’ these aspects, since proper political decision making (in all kinds of areas, not just tail biting) simply does and has to, whether it is considered scientifically possible or not. And if so, I would argue it is most reasonable to try and provide the best possible scientific support, while being as honest as possible e.g. about uncertainty margins and the relevance of incorporating more information. I also think the estimate provides broad support to ‘farewell-dock’ initiatives such as those in Finland, Sweden, Denmark, the Netherlands, the UK and Germany.

FareWellDock publication list

At present the FareWellDock website has 97 blog posts (like this one).

We are drafting our final report and finalising our publication list. Here you can find the FareWellDock publication list. At present we are heading towards 28 peer-reviewed scientific publications, 6 book chapters, 35 conference contributions, 16+ farm-magazine articles, 14 training sessions and several other communication activities (internet and radio).

FareWellDock logo

 

Proper enrichment for intensively-farmed pigs – From review to preview

Bracke, M.B.M. 2016. Enrichment materials for intensively-farmed pigs – From review to preview (Conference abstract & presentation, ICPD 2016). In: Kemp, B. et al., 2016. 16th International Conference on Production Diseases in Farm Animals. June 20-23, 2016. Wageningen, NL. p. 179.

Abstract

Tail biting is a well-known production disease in intensively-farmed pigs raising concern for animal welfare, e.g. related to the practice of routine tail docking. To reduce tail biting pigs are provided with enrichment materials. EU legislation requires that pigs have permanent access to a sufficient quantity of material to enable proper investigation and manipulation activities. In order to meet this directive many pigs are provided with a metal chain with or without a rather indestructible object attached to the chain. The European commission recently revised current guidelines as to what constitutes adequate enrichment, apparently moving into the direction of the status-quo in welfare schemes. Building on extensive previous work at Wageningen UR Livestock Research, especially on the modelling of pig enrichment (the so-called RICHPIG model) a review is presented of our current state of knowledge. In addition, an outline is given as to how so-called AMI-sensors, measuring Animal-Material Interactions (AMI) (semi-)automatically, can be used to assess the pig’s need for enrichment, also in relation to aspects associated with health status, such as feed restriction, biting wounds and streptococcus infection. It is suggested that the use of chains with or without rather indestructible materials such as pipes, balls or (hard)wood is generally inadequate to enrich the pens of intensively-farmed pigs. An evolutionary mechanism appears to be underlying the causation of multifactorial welfare problems in general, the issues of enrichment, tail biting and tail docking in pigs in particular. In this respect ongoing selection for increased resource efficiency has been exerting a profound impact on livestock production. Various routes are explored as to how persistent welfare problems may be resolved, including a method that has been called Intelligent Natural Design (IND).

Branched chain
Two organic pigs interacting simultaneously with a branched chain in the snow. Despite access to a straw bed for rooting, even organic pigs may interact with such chains for long periods of time, esp. directed towards the floor. In fact they will root the chain on the floor more than twice as much as playing with it in a horizontal position. In intensive pig production chains are often (too) short, and when a hockey-type ball or ‘sustainable’ plastic pipe is attached to the end of such a chain the pigs’ interest, and their welfare, is often even reduced further. By contrast, to improve the chain further 7mm stainless-steel anchor chains may be recommended for growing pigs over the cheaper c-chain shown here, as anchor chains have heavier and more rounded shackles.

See also an older previous presentation on tail biting.

Bracke, M.B.M, Wolthuis, M., Zonderland, J. J., Kluivers, M., 2011. TAILS TO TELL – Tail docking, tail biting and enrichment for pigs – Experiences from the Netherlands. Herning, DK, May 25-26, 2011.

European commission initiative to reduce tail docking and improve enrichment

March 2016 the European Commission takes another step to reduce tail docking and improve enrichment for pigs as part of its animal welfare strategy.

Here are some relevant phrases from the announcement made on the Commission’s website:

The welfare of pigs is assured by Council Directive 2008/120/EC.

It applies to all categories of pig and lays down minimum standards for their protection:

  • Providing permanent access to …. materials for rooting and playing

COMMISSION RECOMMENDATION (EU) 2016/336 of 8 March 2016 on the application of Council Directive 2008/120/EC laying down minimum standards for the protection of pigs as regards measures to reduce the need for tail-docking.

STAFF WORKING DOCUMENTpdf(706 kB) on best practices with a view to the prevention of routine tail-docking and the provision of enrichment materials to pigs [SWD(2016)49 final] Following the adoption of the Commission Recommendation (EU) 2016/336 as regards measures to reduce the need for tail-docking, the staff working document provides useful tools to a harmonised understanding on how the provision of manipulable material and avoidance of tail-docking can be practically achieved.

The working document recognises that proper enrichment is important to help prevent tail biting, and hence the need for tail docking.

Specified as unsafe are synthetic ropes, tyres, dry wood, dry sawdust, poorly stored straw, untreated peat/mushroom compost and dirty objects.

Furthermore proper enrichment should have one or more of the following qualities:

  • Edible or feed-like (to eat or smell)
  • Chewable (to bite)
  • Investigable (to root)
  • Manipulable (to change its location, appearance or
    structure)

Provision should be

  • of sustainable interest
  • accessible
  • of sufficient quantity
  • clean
MATERIALS OF MARGINAL INTEREST
Materials of marginal interest should not be used as essential or single component of pig
enrichment materials. They can provide distraction but should not be considered as
fulfiling the essential needs of the pigs. Other materials should also be provided.
Materials of marginal interest include objects, such as hard plastic piping or chains.
Marginal materials may supplement suboptimal materials like stones or strawdust briquette.

News from The Netherlands (and Germany)

This first week of February 2016 two items related to tail biting appeared in farmers’ press in The Netherlands. In addition, we recently provided input into a European project on the welfare of poultry, which will be reported on briefly below.

One news item announced that farmers are invited at the Intensive Farming Fair in Venray (LIV Venray), March 1-3 2016. At the fair two finished tail-biting projects will be presented and discussed with entrepreneurs who are active in intensive farming. One of the projects is ‘Keeping pigs with intact tails’.

The other item was a report on the German tail biting (Ringelschwanz-)project. First results of the curly-tail project in North-Rhine Westphalia showed that more than one quarter of piglets at 15 participating research farms had damaged tails before the end of the rearing period. At some farms half of the tails had been bitten. At the 15 farms participating in the study 30-94 piglets had been reared on each farm without tail docking. Outbreaks of tail biting appeared to be associated with streptococcus infections. Prevention and intervention strategies included providing dried maize silage or alfalfa hay twice daily and the isolation of biters respectively. Most tail biting occurred between week 2 and 4 after weaning. This level of tail biting is not so good news. If these levels of tail biting would persist, it may indicate that intensive systems cannot be made compatible with acceptable levels of animal welfare. Fortunately, however, experiences in Finland indicate that it should be possible to keep undocked pigs in conventional systems at much lower levels of tail biting (around 2% based on slaughter house data).

The German farmers union and North-Rhine Westphalia have agreed 1.5 years ago that they intend to stop tail docking by 2017. This will be done provided on-farm research shows that tail biting among pigs with intact tails does not reduce animal welfare. The general expectation is that the objective of safely quitting tail docking cannot be met.

From a Dutch research perspective two notes appear to be relevant:

The first is that our semantic-modelling approach provides a unique methodology to determine/assess  the cut-off point between the welfare impacts of tail biting and tail docking using formalised biological reasoning and scientific evidence. In this computation one must take into account all relevant aspects: So, not only the point that the welfare of tail bitten pigs is reduced due to blunt trauma (biting) compared to the sharp trauma of tail docking at an earlier age. But also the point must be recognised that the welfare of tail biting pigs may relatively be improved when they can bite their penmates’ tails, compared to when they cannot (other things being equal, i.e. lack of suitable enrichment). What matters for welfare as considered from the animals’ point of view is the extent to which they can satisfy their needs, e.g. for biting and the expression of species-specific foraging behaviour, taking into account also the activation of coping mechanisms such as redirected and harmful-social behaviours.

The second thing to note about the results of the German research project is the following. In addition to taking note of the bad news (many bitten tails, which has to be taken seriously, perhaps even to the point that the conclusion must be drawn that intensive systems are not compatible with acceptable animal welfare), one may also try to move forwards for the time being by focussing on the good news: Two out of the 15 pilot farms in Germany managed to keep all piglets’ tails intact. Other farms may learn from what was done on these farms to keep tails intact. Furthermore, since the EC Directive requires that all farms try to periodically keep at least some intact pigs, a 10% success rate could provide sufficient scope for progress at the population level, even when the causes of the success are poorly understood. This can be concluded from a methodology we designed previously to solve complex welfare problems like feather pecking in poultry and tail biting in pigs. This methodology has been called ‘Intelligent Natural Design’ (INO in Dutch; see also Bracke, 2010). It basically uses evolution to select the best farms to make increasing progress towards the objective of completely stopping the practice of routine tail docking in pig farming.

Countering the routine practices of tail docking and beak trimming, as well as preventing and treating outbreaks of tail biting and feather pecking requires an understanding of tipping points. Recently, we modified our tipping-bucket model for tail biting for inclusion on the Henhub website. This website, which is part of the Hennovation project, gives information about welfare issues in poultry, esp. (at present) feather pecking. On that site the modified tipping-bucket model can be found under the post describing the mechanism of feather pecking.

Tipping-bucket model of tail biting in pigs
Tipping-bucket model of tail biting in pigs

.
Bracke, M.B.M. 2010. Towards long(er) pig tails: New strategy to solve animal welfare problems. In: Lidfors, L., Blokhuis, H., Keeling, L., Proceedings of the 44th Congress of the ISAE, August 4-7 2010, Wageningen Academic Publishers, Wageningen, p. 135. (Poster, ISAE 2010, Uppsala, Sweden, Aug 4-7.

EU compliance regarding enrichment and tail docking

This post is the abstract of a student report:

Edman, F. 2014. Do the Member States of the European Union comply with the legal requirements for pigs regarding manipulable material and tail docking? Student report 572, SLU, Skara, Sweden. Accessed 17-2-2015.

Abstract

Tail biting behaviour is a major animal welfare issue in intense pig production, as well as an economic issue. To prevent the behaviour, tail docking is practised. It is a painful procedure where a part of or the whole tail is cut off.

There is a lot of research on the subject of tail biting, with a big variety of solutions to prevent the behaviour. Scientists are consistent about that the absence of manipulable material increases the risk for tail biting. Manipulable material works as an environmental enrichment and stimulates natural behaviours of the pig, such as investigation and rooting. It helps pigs to cope with the environment and reduces stress and frustration, triggers that can lead to tail biting.

The legal requirement regarding tail docking state that it shall not be practised on a routine basis and has been in force since the 1st of January 1994. It was strengthened in 2003 and now appears in Council Directive 2008/120/EC which codifies the earlier directives. The legal requirement now states that measures to prevent tail biting shall be taken before practising tail docking, measures such as changing inadequate management systems, changed environment and reduced stock densities.

Pigs shall also have access to a suitable material or object, to be able to perform natural behaviours and prevent tail biting and stereotypies. In the latest version of the directive on pigs this material was defined as straw, hay, wood, sawdust, mushroom compost, peat or a mixture of such.

The aim of this study was to investigate the current situation of compliance with the legal requirements in the directive on pigs, regarding the provision of manipulable material and the routine practice of tail docking. It was also to investigate actions to increase compliance among the Member States in the European Union. A descriptive analysis of available FVO-reports was used, together with written answers from the Competent Authorities and a qualitative interview with people at the Commission and the FVO.

The results of this report showed that 18 out of 28 Member States in the European Union do not comply with the legal requirement regarding the provision of manipulable material, and that 17 of the Member States do not comply with the legal requirement regarding the practice of tail docking. There has not been any actions such as sanctions to increase the compliance among the Member States.

These findings make an overall conclusion possible about the current issues with the compliance of the directive on pigs. There are no further intrinsic actions to increase compliance, due to a lack of responsibility among the involved parties, such as pig farmers, Competent Authorities and the Commision. Due to the lack of intrinsic action, it is an impossibility to conclude when full compliance will be fulfilled.

Routine tail docking of pigs

This post presents the abstract and executive summary of the EU report:

Marzocchi, O. 2014.  Routine tail-docking of pigs. Policy Department C: Citizens’ Rights and Constitutional Affairs, European Parliament, European Union, Brussels, accessed 17-2-2015.

Abstract

Upon request of the PETI committee, the present study examines the issues raised in Petition 0336/2012, the legal framework on the protection of pigs, the level of implementation of the Directive on the protection of pigs in relation to tail-docking on the basis of the available information, the actions being carried out, or that could be carried out, to ensure proper implementation by Member States of the Directive requirements.
Docking a piglet's tail using cautery (hot iron)

Executive summary

The Committee on Petitions (PETI) examined on the 1st of April 2014 Petition 0336/2012 by C.R. (Danish citizen), on behalf of Dyrenes Beskyttelse (Danish Animal Welfare Society), concerning the routine tail-docking of piglets in Denmark1.

The petition raised the issue of the lack of implementation in Denmark, as well as in most EU Member States, of Council Directive 2008/120/EC laying down minimum standards for the protection of pigs, in relation to the rules governing the tail-docking of pigs.

The Commission recognised during the discussion that the implementation of the Directive in this regard is not satisfactory, but stated that it did not intend to launch infringement proceedings nor to propose amendments to the Directive, considering these actions as not appropriate. It stated instead that it preferred to rely on guidelines for Member States to ensure better implementation of the Directive, as well as on e-learning tools that are currently being developed. It also pointed to upcoming initiatives, such as framework legislation on animal welfare.

On the same day, PETI committee coordinators discussed the petition, the unsatisfactory implementation of the Directive, as well as the refusal by the Commission to launch infringement proceedings against non-compliant Member States. It was decided to request the Policy Department to analyse the issues discussed so to allow the committee to re-examine the matter during the new parliamentary term, including by potentially deciding to send a delegation to a number of Member States to investigate on the effective implementation of the Council Directive.

The present study addresses the PETI coordinators’ request to analyse the issues raised in the petition, the legal framework on the protection of pigs, the level of implementation of the Directive on the protection of pigs in relation to tail-docking on the basis of the available information, and the actions being carried out, or that could be carried out, to ensure proper implementation by Member States of the Directive requirements.

The study concludes that:

all the available evidence points at persisting high rates of non-compliance in the large majority of Member States in relation to the ban on routine tail-docking of pigs;

-Commission guidelines, training and e-learning tools, including on enrichment and manipulable materials, as well as a possible Framework Law on Animal Welfare, can be useful instruments to support farmers and Member States’ authorities in the implementation of the Directive; – at the same time, these could be accompanied by a stricter enforcement policy, notably since the Directive has been in force for more than 10 years (while the ban on routine tail-docking has been in force for more than 20 years); – the Commission could be bolder and prepared to launch infringement proceedings as an enforcement tool of last resort, as the mere prospect of serious action may prompt Member States to comply; – the Commission could also more systematically collect, monitor and publish information on the transposition of the Directive by Member States, as well as on their degree of compliance with the ban on routine tail-docking of pigs, including through inspections and specific requests to Member States.

Box 1: Tail-biting, tail-docking, routine tail-docking, enriching and manipulable material

Tail-biting, ie a pig biting another pigs’ tail, is an abnormal behaviour caused by several risk factors, notably by a poor or stressful environment frustrating the normal investigative behaviour of pigs (which are among the most intelligent and curious animals) in common intensive farming conditions. Tail-biting can result in infections, affecting the health and well-being of tail bitten pigs and can lead to tail-biting outbreaks.

Tail-docking is the practice of removing the tail or part of the tail of a pig, while routine tail-docking is the systematic docking of the tail of pigs, normally done in the early days of life, with the aim of avoiding the risk of tail-biting. It is done without anaesthesia, though it is a mutilation which is painful. Tail-docking can cause long-term chronic pain and infections, as well as redirection of the biting behaviour to other body parts, such as ears and legs.

Enriching and manipulable materials are materials such as straw, hay, wood, sawdust, mushroom compost and peat or a mixture of these, with which pigs can satisfy their explorative, playful and foraging behaviours. Studies have highlighted that the provision of such materials has a positive effect on pigs, reducing the risk of tailbiting.

Note: The opinions expressed in this document are the sole responsibility of the author and do not necessarily represent the official position of the European Parliament