Tag Archives: Project

EC Webinar on Tail biting and Tail docking of Pigs

4-6th October 2016: Meeting and Webinar on Actions to Prevent Tailbiting and Reduce Tail docking of Pigs

Note: The presentations of the meeting can be accessed here. The video  recordings will be available for some time after the meeting via this link.

The European Commission Directorate General for Health and Food Safety is organising a three day meeting at the offices of its Health and Food Audit and Analysis Directorate in Ireland on actions to prevent tailbiting and reduce tail docking of pigs.

The programme includes a wide range of relevant topics. It is delivered by experts from industry, Member State Competent Authorities, research bodies, EU institutions and NGOs.  Case studies will facilitate the exchange of good practice and workshops will focus on better solutions for the future. The work of the EU FareWellDock project will also be presented at this meeting.

The meeting is aimed at the authorities of Member States, international organizations, scientists, industry and NGOs.

The Agenda can be found below.

Please note that proceedings from this meeting, apart from breakout groups, will be broadcast live on the Internet and can be followed by logging in to the following links:

  • 4 October: 14:00- 16:45 GMT.

https://webcast.ec.europa.eu/meeting-on-actions-to-prevent-tailbiting-and-reduce-tail-docking-of-pigs-4

  • 5 October: 09:00- 16:30 GMT.

https://webcast.ec.europa.eu/meeting-on-actions-to-prevent-tailbiting-and-reduce-tail-docking-of-pigs-5

  • 6 October: 09:45-15:00 GMT.

https://webcast.ec.europa.eu/meeting-on-actions-to-prevent-tailbiting-and-reduce-tail-docking-of-pigs-6

Please send any questions you may have on the presentations to the functional mailbox: SANTE-IRL-WEBINAR-REARING-PIGS-WITH-INTACT-TAILS@ec.europa.eu and we will endeavour to answer as many as we can during the time for questions at the end of each presentation. If we cannot answer your question during the webinar, we will forward your question to the presenter for response after the event.

Curly tail

Agenda

MEETING ON ACTIONS TO PREVENT TAILBITING AND REDUCE TAIL DOCKING OF PIGS*

4th-6th October 2016, Dir F, Grange, Ireland

Tuesday 4th Oct

14:00 Opening Address, Background and objectives Dir. F. T Cassidy
14:20 Policy perspective Dir G. D Simonin
14:40 Farewelldock project Overview & Immediate and long term consequences of tail docking and tail biting for pig welfare. S Edwards/P Di Giminiani
15:00 Farewelldock project – Use of straw to reduce tail-biting as an alternative to tail-docking. L J Pedersen
15:20 Farewelldock project – Early detection of tail biting and the role of health. C Munsterhjelm
15:40 COST action (GroupHouseNet) with activities related to Tailbiting. A Prunier
16:00 Coffee break
16:30 Overview Report of Study Visits on Rearing Pigs with intact tails
“Problems/Solutions”
Breakout group discussion on measuring on-farm performance of criteria listed in Commission Recommendation (EU) 2016/336. Dir F
18:00 Close of day 1 – Bus to Knightsbrook Hotel
Wednesday 5th Oct

08:30 Bus from Knightsbrook Hotel
09:00 Change- Recent Experience from the poultry sector. B Eivers /N O’Nuallain
09:20 Funding possibilities for changes to housing/management leading to lower stress pig production.  P G Solernou
09:50 Maintaining low stress pig production-rearing pigs with intact tails. R Weber
10:30 Coffee break
11:00 Maintaining low stress pig production-rearing pigs with intact tails. J Lindahl
11:40 Maintaining low stress pig production-rearing pigs with intact tails. T.Tirkkonen
12:30 Lunch
13:30 NGO perspectives on developing and implementing a Quality Assurance scheme for improving the rearing of pigs and phasing out tail docking.  Bert Van Den Berg
14:00 Actions to improve the productivity and welfare of pigs with the aim of reducing tail docking.  D L Schroder
14:30 Actions to improve the productivity and welfare of pigs with the aim of reducing tail docking.  H Van der Velde
15:00 Coffee break
15:30 Actions to improve the productivity and welfare of pigs with the aim of reducing tail docking. C Veit
16:00 Actions to improve the productivity and welfare of pigs with the aim of reducing tail docking.  M Chapman-Rose
16:30 MS Communication strategies for improving the productivity and welfare of pigs with the aim of reducing tail docking. F2
Breakout group discussion on benchmarking farms at national level on levels of tail biting, tail docking and provision of sufficient enrichment  materia
17:45 Close of day 2 – Bus to Knightsbrook Hotel

Thursday 6th Oct

08:30 Bus from Knightsbrook Hotel
09:00 Overview of MS’ Action Plans to implement the Commission Recommendations (EU) 2016/336 of 8 March 2016. Dir F
09:45 COM programme on actions to prevent tailbiting and reduce tail docking of pigs. Dir F
10:30 Coffee break
11:00 Industry Initiatives to improve the rearing of pigs and phasing out tail docking.  H P Lahrmann
11:30 Discussion
12:30 Lunch
13:30 Conclusions and future actions
15:00 Departure of bus for airport / Departure of bus to hotel
17:30 Departure of bus for Dublin
*   Please note that proceedings from this meeting, apart from breakout groups, will be broadcast live on the Internet.

Temporal changes in mechanical nociceptive thresholds in juvenile pigs subjected to surgical tail amputation: a model of injury induced by tail biting

Temporal changes in mechanical nociceptive thresholds in juvenile pigs subjected to surgical tail amputation: a model of injury induced by tail biting. By Di Giminiani, P., E. Malcolm, M. Leach, M. Herskin, D. Sandercock, S. Edwards, 2016. Royal Dublin Society: Abstracts book of the 24th International Pig Veterinary Society (IPVS) Congress, Dublin, Republic of Ireland 7-10th June 2016. p. 649.

Abstract

Introduction: Tail biting is a global welfare problem in the pig industry leading to significant tail injury and potential carcass rejection. The temporal effects of such injuries and subsequent healing are presently unknown, although limb amputation in humans can lead to abnormal neural activity and decreased nociceptive thresholds. In order to evaluate potential sensitisation following tail damage, we created a model by surgical amputation of tails, and assessed mechanical nociceptive thresholds.

Materials and Methods: Surgical tail resection was performed to assess the influence of age, extent of tail amputated and time since amputation on thresholds of mechanical nociception. To evaluate the effect of age at the time of injury, female pigs underwent surgery at 9 weeks (±3 days ‘weaner’) (n=19) or 17 weeks (±3 days ‘finisher’) (n=43). The effect of time after amputation was evaluated on 24 pigs at 8 weeks, and 38 pigs at 16 weeks after surgery. The effect of the extent of tail amputated was assessed by assigning the pigs to 3 treatments (‘Intact’: sham-amputation; ‘short tail’: 2/3 of tail removed; ‘long tail’: 1/3 of tail removed). A Pressure Application Measurement device was used to record mechanical nociceptive thresholds (tail flick or tail clamp withdrawal responses). Within a single session, three stimuli were applied to a skin area proximal to the site of amputation, 3 days pre-surgery, 1 week and either 8 or 16 weeks post-amputation.

Results: Across the two amputation ages, results indicated that tail amputation induced a significant reduction (P<0.05) in mechanical nociceptive thresholds in short and long tails one week after surgery. The same treatment effect was observed at 16 weeks after amputation performed at 9 weeks of age (P<0.05). For surgeries performed at 17 weeks of age, thresholds tended to be lower in short compared to intact tails (P=0.081) and significantly lower (P<0.05) in long tail pigs 8 weeks after amputation. No significant difference was observed at 16 weeks following surgeries performed at 17 weeks of age.

Conclusion: These results show that surgical amputation of pig tails leads to decreased cutaneous mechanical nociceptive thresholds in the skin area proximal to the site of injury. Results indicated that severe tail injury occurring in the weaner period may be associated with sensitisation up to 16 weeks following the injury. In contrast, injuries occurring in the finishing period appeared to be associated with shorter lasting mechanical sensitisation, resolving within 16 weeks.

Poster Di Giminiani IPVS

 

FareWellDock Edinburgh Satellite Meeting

On July 12th the FareWellDock consortium hosted a satellite meeting and videoconference at the Roslin Institute Building near Edinburgh to coincide with the 50th conference of the International Society for Applied Ethology. The aim of the satellite meeting was to invite researchers involved in other European projects on tail docking and biting to share their work and ideas with the consortium.

The speakers gave four excellent presentations which generated interesting discussions and more ideas for planning future work (see brief summaries below)

Updates of the three work packages were also presented at the meeting. Since the last meeting in March, several more articles on tail docking and biting have been published and a number are near completion. Work progress in all three work packages appears to be on track.

Emphasis was placed upon generating and circulating draft fact sheets from the 3 work packages before the FVO Stakeholder Meeting in Grange, Republic of Ireland on October 4-6th 2016.

Sabine Dippel, a researcher at the Federal Research Institute of Animal Health (FLI), provided a comprehensive overview of “Current tail biting projects in Germany” and the summarised outputs from 51 different projects ranging from those focussed on basic science to feasibility and survey-based studies. Preliminary findings suggested that:
• Undocked weaner pigs were at higher risk of tail biting than undocked fattening pigs.
• Farmers need to gain experience in observing pigs
• Farms need to change step-by-step towards intact tails
• Focus on farm-individual optimisation
• Greater coordination between production stages
• Advice, training, knowledge transfer were essential to achieving these aims
Tail biting pigs
Valérie Courboulay a researcher at IFIP (French Institute for the pig and pork industry) provided an overview of several IFIP related studies on tail biting and dissemination of information in the form of technical datasheets to French farmers. Data presented from studies where pain relief (meloxicam) was provided at the time of docking and castration showed marginal affects on general behaviours, except for increased time spent sitting. When investigating tail posture, pigs with more severe tail lesions (score 3) exhibited more tail-down posture than pigs with minor tail or no tail lesions (score 2-0). A recent study has been undertaken to develop a model of cannibalism in pigs based on frustration of exploratory behaviours by providing environmental enrichment (progressive supply) and straw in the post weaning period and then some groups were reared with or without environmental enrichment for a short duration in the fattening period. The results showed that:
• Removal of enrichment between the post weaning and fattening periods is not sufficient to induce tail biting
• Providing objects for a few days and removing them is not sufficient to induce tail biting
• Frustration of investigative behaviour, that is considered as a major risk factor, is not sufficient to induce tail biting

INRA factsheet on pain

Jen-yun Chou, a first year PhD student working at Teagasc in the Republic of Ireland, presented preliminary findings from her studies into the use of wood as a strategy to reduce the risk of tail biting in pigs managed on slatted floors. The potential use of wood as a manipulable material is viewed positively in Irish production systems due to the problems of slurry removal caused by loose straw in fully slatted systems. To date, preliminary data have shown that softwoods such as spruce and scots pine are more readily used by the pigs compared to more hardwoods such as larch and beech.
• Spruce was used up most quickly both in terms of length and weight loss, possibly due to its softness.
• There is a tendency of more interaction with the wood by pigs in pens provided with spruce.
• In terms of texture and moisture spruce is a good option for enrichment but the cost may be a drawback
• Different wood types did not affect harmful behaviours, pig physical measures and production.
• Correlation between ear lesion and tear staining scorings implies a potential welfare assessment method on farm due to easy visibility.
• Correlation between tail posture and lesion shows that posture could be an indicator of tail biting

Chewed wood

Anna Sinclair, a first year SRUC PhD student currently working at the Institut National de la Recherché Agronomique (INRA), presented preliminary findings from studies into the behavioural and neural/cellular consequences of tooth resection in commercial pigs at its implications for pig welfare. Although this work was not directly related to tail docking or biting it is a project that was developed through on-going collaborative research by Dr. Armelle Prunier ay INRA and Dr. Dale Sandercock at SRUC within the FareWellDock project, addressing the issue of early life pain in livestock. Preliminary data were presented on the effects of tooth clipping and tooth grinding on tooth length and tooth/gum injury, haematological measures, live weight/growth rates, general, stress and pain related behavioural measures. Findings to date have shown that:
• Tooth damage was readily observed but variable
• Maxillary incisors are most consistently affected
• Clipping results in tooth and gum bleeding
• Growth rates are unaffected
• Pigs exhibit reduced activity after tooth treatments
• Pigs keep their ears back less and their tails down more, although this could be handling effect
• High variation at this stage – more data are required

Tooth treatment

Proper enrichment for intensively-farmed pigs – From review to preview

Bracke, M.B.M. 2016. Enrichment materials for intensively-farmed pigs – From review to preview (Conference abstract & presentation, ICPD 2016). In: Kemp, B. et al., 2016. 16th International Conference on Production Diseases in Farm Animals. June 20-23, 2016. Wageningen, NL. p. 179.

Abstract

Tail biting is a well-known production disease in intensively-farmed pigs raising concern for animal welfare, e.g. related to the practice of routine tail docking. To reduce tail biting pigs are provided with enrichment materials. EU legislation requires that pigs have permanent access to a sufficient quantity of material to enable proper investigation and manipulation activities. In order to meet this directive many pigs are provided with a metal chain with or without a rather indestructible object attached to the chain. The European commission recently revised current guidelines as to what constitutes adequate enrichment, apparently moving into the direction of the status-quo in welfare schemes. Building on extensive previous work at Wageningen UR Livestock Research, especially on the modelling of pig enrichment (the so-called RICHPIG model) a review is presented of our current state of knowledge. In addition, an outline is given as to how so-called AMI-sensors, measuring Animal-Material Interactions (AMI) (semi-)automatically, can be used to assess the pig’s need for enrichment, also in relation to aspects associated with health status, such as feed restriction, biting wounds and streptococcus infection. It is suggested that the use of chains with or without rather indestructible materials such as pipes, balls or (hard)wood is generally inadequate to enrich the pens of intensively-farmed pigs. An evolutionary mechanism appears to be underlying the causation of multifactorial welfare problems in general, the issues of enrichment, tail biting and tail docking in pigs in particular. In this respect ongoing selection for increased resource efficiency has been exerting a profound impact on livestock production. Various routes are explored as to how persistent welfare problems may be resolved, including a method that has been called Intelligent Natural Design (IND).

Branched chain
Two organic pigs interacting simultaneously with a branched chain in the snow. Despite access to a straw bed for rooting, even organic pigs may interact with such chains for long periods of time, esp. directed towards the floor. In fact they will root the chain on the floor more than twice as much as playing with it in a horizontal position. In intensive pig production chains are often (too) short, and when a hockey-type ball or ‘sustainable’ plastic pipe is attached to the end of such a chain the pigs’ interest, and their welfare, is often even reduced further. By contrast, to improve the chain further 7mm stainless-steel anchor chains may be recommended for growing pigs over the cheaper c-chain shown here, as anchor chains have heavier and more rounded shackles.

See also an older previous presentation on tail biting.

Bracke, M.B.M, Wolthuis, M., Zonderland, J. J., Kluivers, M., 2011. TAILS TO TELL – Tail docking, tail biting and enrichment for pigs – Experiences from the Netherlands. Herning, DK, May 25-26, 2011.

Training veterinarians and agricultural advisers on a novel tool for tail biting prevention

Training veterinarians and agricultural advisers on a novel tool for tail biting prevention
By A. L. vom Brocke, D. P. Madey, M. Gauly, L. Schrader and S. Dippel (Vet Rec Open 2015).

Abstract

Introduction Many health and welfare problems in modern livestock production are multifactorial problems which require innovative solutions, such as novel risk assessment and management tools. However, the best way to distribute such novel – and usually complex – tools to the key applicants still has to be discussed.
Materials and methods This paper shares experiences from distributing a novel tail biting prevention tool (‘SchwIP’) to 115 farm advisers and 19 veterinarians in 23 one-day workshops. Participants gave written and oral feedback at the end of the workshops, which was later analysed together with the number of farms they had visited after the workshops. Workshop groups were categorised into groups showing (a) HIGH, (b) INTermediate or (c) LOW levels of antagonism against SchwIP or parts of it during workshop discussions.
Results Group types did not significantly differ in their evaluation of knowledge transfer. However, HIGH group members evaluated the on-farm usability of the tool significantly lower in the workshop feedback and tended to visit fewer farms.
Conclusions As antagonistic discussion can influence workshop output, future workshop leaders should strive for basic communication training as well as some group leadership experience before setting up and leading workshops.

Associations between tail lesions and other welfare conditions and behaviours in pigs

Associations between tail lesions and other welfare conditions and behaviours in pigs
Paper presented at the ISAE regional meeting, At Teagasc Moorepark, Fermoy, Co. Cork, Ireland, by Nienke van Staaveren, Elise Moussard, Alison Hanlon and Laura Boyle.

Abstract

Tail lesions are outcomes of tail biting behaviour and reflective of impaired welfare in pigs. This work is part of a study which aims to validate tail lesions as possible iceberg indicators to be included in the meat inspection process at slaughter (PIGWELFIND).
Twenty farrow-to-finish Irish pig farms were visited. On each farm, 18 randomly selected pens of first (n=6) and second (n=6) weaner stage and finisher (n=6) pigs were inspected. Pigs were observed for 10 min and the number of pigs with tail, ear, flank and skin lesions and the number showing signs of other health deviations (e.g. lameness, sickness) were recorded. All occurrence behaviour sampling was used to record frequency of coughing and sneezing (5 min) and tail-, ear-, and flank biting, fighting and mounting behaviour (5 min). Welfare conditions were expressed as percentage of pigs in a pen and behaviours were expressed per pig to correct for different numbers of pigs per pen (32.1±16.0 pigs/pen). Mixed model equation methods were used to analyse the effect of welfare conditions and behaviours on percentage of pigs with tail lesions. Farms and stage were included as fixed effects and welfare and behaviour indicators were included as covariates. Pen within stage by farm was included as random effect. Results for covariates are presented as regression coefficients.
On average, 7.4% of pigs in a pen had tail lesions. Preliminary results show that the percentage of pigs with tail lesions was greater for pens with a higher percentage of pigs with skin lesions but lower for pens with a higher percentage of sick pigs (P<0.05). Furthermore, the percentage of pigs with tail lesions was positively associated with tail biting (P<0.001).
Results suggest that tail lesions may have potential as iceberg indicators for pig welfare. However, more research is needed to further elucidate the nature of these associations.

6th FareWellDock meeting

March 16 the FareWellDock team had another videoconference meeting. Partners from FI (3), UK (4), DK (4), SE (1), FR (1) and NL (1) presented and discussed progress in the various project’s workpackages.

This will be the final year of the project. One of the joint activities is to produce factsheets on the FareWellDock project as a whole, aspects related to tail docking and tail length, the relationship between tail biting and health, enrichment, and the prediction of tail biting outbreaks.

Further meeting scheduled for this year include a meeting associated with this year’s ISAE meeting in Edinburgh, a physical meeting in Denmark and meeting with stakeholders.

Other points of interest:

There was an FVO visit to Finland on banning tail docking, where Anna gave a presentation.

There is a new COST action, GroupHouseNet, on tail biting and feather pecking.

There is a new ANIHWA project PigWatch (Hans Spoolder) “Combining the ‘eye of the stockman’ and precision farming techniques to improve pig welfare”.

The EC had a recent meeting on tail biting, docking and enrichment for pigs.

Several of the FareWellDock partners are involved in the writing of chapters of a new book on pig welfare.

A lot is happening this year ….

6the FareWellDock meeting March 16
6the FareWellDock meeting March 16

PigWatch: Combining the ‘eye of the stockman’ and precision farming techniques to improve pig welfare

PigWatch is a new ANIHWA project.

Abstract:

Tail biting and aggression between finishing pigs are injurious behaviours affecting health, welfare and productivity. Solutions to these behavioural problems have been researched extensively and include tail docking, provision of environmental enrichment and increasing group stability. However, their effectiveness differs considerably between research labs and commercial practice, and between farms. It is obvious that farmers themselves play a key role in the effectiveness of these ?standard recommendations?. Experimenting and sharing their experiences with scientists and advisors will help to progress existing knowledge into farm-specific tailor-made solutions.

To facilitate the exchange of ideas, and to monitor the effects of these solutions, it is important that there is a common definition and description of injurious behaviours. Therefore, together with pig farmers, PigWatch aims to develop and apply animal based measures to avoid the pain, frustration and negative emotional states associated with tail biting and aggression in finishing pigs.

As a starting point the knowledge generated in FareWellDock and EU Welnet will be used, as well as national initiatives from the participating countries. PigWatch continues these developments at two levels: on-farm and at the abattoir.

The first WP develops animal based warning signals to identify and, if possible predict outbreaks of tail biting or fighting on farm. This will allow farmers to respond to imminent problems before they get out of hand. It includes precision farming techniques for detection of behavioural activity, and lesion detection based on presence of haemoglobin. Finally, it develops protocols for visual scoring of behavioural and other warning signals.

The second WP uses animal based measures to monitor tail biting and skin lesion incidence through routine automated data collection at the slaughter plant. The data will facilitate comparisons (bench marking) between farms, and monitoring the effects of solutions over time. The technology is based on analysis of digital images of live pigs and carcasses. This will be developed in a laboratory setting, validated on a slaughter house and tested in a commercial situation.

The pig farming community will be involved through the whole project, via Farmer Focus Groups which help to develop and disseminate the innovative techniques proposed. PigWatch aims to do this in the five participating countries: France, Denmark, Switzerland, Germany and The Netherlands.

Principle investigator: Dr. Hans Spoolder, Wageningen UR Livestock Research (WLR), Netherlands

Project partners: INRA, FiBL, FBN, CEA LETI, DMRI

PigWatch website

News from The Netherlands (and Germany)

This first week of February 2016 two items related to tail biting appeared in farmers’ press in The Netherlands. In addition, we recently provided input into a European project on the welfare of poultry, which will be reported on briefly below.

One news item announced that farmers are invited at the Intensive Farming Fair in Venray (LIV Venray), March 1-3 2016. At the fair two finished tail-biting projects will be presented and discussed with entrepreneurs who are active in intensive farming. One of the projects is ‘Keeping pigs with intact tails’.

The other item was a report on the German tail biting (Ringelschwanz-)project. First results of the curly-tail project in North-Rhine Westphalia showed that more than one quarter of piglets at 15 participating research farms had damaged tails before the end of the rearing period. At some farms half of the tails had been bitten. At the 15 farms participating in the study 30-94 piglets had been reared on each farm without tail docking. Outbreaks of tail biting appeared to be associated with streptococcus infections. Prevention and intervention strategies included providing dried maize silage or alfalfa hay twice daily and the isolation of biters respectively. Most tail biting occurred between week 2 and 4 after weaning. This level of tail biting is not so good news. If these levels of tail biting would persist, it may indicate that intensive systems cannot be made compatible with acceptable levels of animal welfare. Fortunately, however, experiences in Finland indicate that it should be possible to keep undocked pigs in conventional systems at much lower levels of tail biting (around 2% based on slaughter house data).

The German farmers union and North-Rhine Westphalia have agreed 1.5 years ago that they intend to stop tail docking by 2017. This will be done provided on-farm research shows that tail biting among pigs with intact tails does not reduce animal welfare. The general expectation is that the objective of safely quitting tail docking cannot be met.

From a Dutch research perspective two notes appear to be relevant:

The first is that our semantic-modelling approach provides a unique methodology to determine/assess  the cut-off point between the welfare impacts of tail biting and tail docking using formalised biological reasoning and scientific evidence. In this computation one must take into account all relevant aspects: So, not only the point that the welfare of tail bitten pigs is reduced due to blunt trauma (biting) compared to the sharp trauma of tail docking at an earlier age. But also the point must be recognised that the welfare of tail biting pigs may relatively be improved when they can bite their penmates’ tails, compared to when they cannot (other things being equal, i.e. lack of suitable enrichment). What matters for welfare as considered from the animals’ point of view is the extent to which they can satisfy their needs, e.g. for biting and the expression of species-specific foraging behaviour, taking into account also the activation of coping mechanisms such as redirected and harmful-social behaviours.

The second thing to note about the results of the German research project is the following. In addition to taking note of the bad news (many bitten tails, which has to be taken seriously, perhaps even to the point that the conclusion must be drawn that intensive systems are not compatible with acceptable animal welfare), one may also try to move forwards for the time being by focussing on the good news: Two out of the 15 pilot farms in Germany managed to keep all piglets’ tails intact. Other farms may learn from what was done on these farms to keep tails intact. Furthermore, since the EC Directive requires that all farms try to periodically keep at least some intact pigs, a 10% success rate could provide sufficient scope for progress at the population level, even when the causes of the success are poorly understood. This can be concluded from a methodology we designed previously to solve complex welfare problems like feather pecking in poultry and tail biting in pigs. This methodology has been called ‘Intelligent Natural Design’ (INO in Dutch; see also Bracke, 2010). It basically uses evolution to select the best farms to make increasing progress towards the objective of completely stopping the practice of routine tail docking in pig farming.

Countering the routine practices of tail docking and beak trimming, as well as preventing and treating outbreaks of tail biting and feather pecking requires an understanding of tipping points. Recently, we modified our tipping-bucket model for tail biting for inclusion on the Henhub website. This website, which is part of the Hennovation project, gives information about welfare issues in poultry, esp. (at present) feather pecking. On that site the modified tipping-bucket model can be found under the post describing the mechanism of feather pecking.

Tipping-bucket model of tail biting in pigs
Tipping-bucket model of tail biting in pigs

.
Bracke, M.B.M. 2010. Towards long(er) pig tails: New strategy to solve animal welfare problems. In: Lidfors, L., Blokhuis, H., Keeling, L., Proceedings of the 44th Congress of the ISAE, August 4-7 2010, Wageningen Academic Publishers, Wageningen, p. 135. (Poster, ISAE 2010, Uppsala, Sweden, Aug 4-7.

Strategies to reduce the risk of tail biting in pigs managed on slatted floors

By Jen-Yun (author)

A 4-year project of “Strategies to reduce the risk of tail biting in pigs managed on slatted floors” has started. It is a collaboration between Teagasc, SRUC and the University of Edinburgh.
Below is a poster on the project presented in the Teagasc Pig Farmers’ Conference 2015.
The project will aim to explore ways to reduce tail-biting on slatted floor systems where straw is not available by environmental enrichment and nutritional strategies.
The enrichments used at the moment are compressed straw and different wood types.
Later the project will also investigate the effects of various lengths of tails, measures to predict tail-biting outbreaks and methods to interfere effectively.
The project will be supervised by Dr Keelin O’Driscoll (Teagasc), Dr Rick D’Eath (SRUC), Dr Dale Sandercock (SRUC), and Prof Natalie Waran (University of Edinburgh).
Dr Amy Haigh is the postdoctoral researcher working together on this project in Teagasc, and Dr Laura Boyle and Dr Edgar Garcia Manzanilla are also the collaborating researchers in Teagasc. I (Jen-Yun) am the PhD student on this project.
fwd uk jy291015 entail poster - JC 28102015c